Partha Pratim Ray!

L Affiliation not available

May 09, 2025

A Review on Vibe Coding: Fundamentals, State-of-the-art,

Challenges and Future Directions

Partha Pratim Ray

Abstract—Vibe coding—where high-level natural-language di-
rectives orchestrate end-to-end software creation—has emerged
as a transformative paradigm in modern development. Going
beyond token-level autocomplete, vibe coding platforms employ
multi-agent pipelines, Retrieval-Augmented Generation (RAG),
and dynamic context management to autonomously scaffold
entire projects: generating directory structures, Application Pro-
gramming Interface (API) layers, user interfaces, test suites,
and Continuous Integration/Continuous Delivery/Deployment
(CI/CD) configurations from conversational prompts. In this
review, we first introduce a unified taxonomy of interaction
modalities—full delegation, guided delegation, active pairing,
and expert consultation—mapped along a delegation—pairing
continuum. We then survey leading implementations across
IDE extensions, browser-based environments, and Command-
Line Interface (CLI) agents, analyzing their architectures, in-
tegration strategies, and benchmarked performance. Building
on these insights, we articulate the key benefits—accelerated
prototyping, democratized software creation, and enriched col-
laboration—while prescribing best practices for adoption. We
identify twelve critical challenges, including model hallucinations,
technical debt, security and compliance risks, skill atrophy, and
governance concerns. Finally, we propose fourteen concrete re-
search directions, from standardized evaluation frameworks and
adaptive “vibe-aware” agents to explainable AI, multimodal inter-
faces, and Development, Security, and Operations (DevSecOps)
integration. This comprehensive roadmap equips researchers and
practitioners to harness the promise of vibe coding with rigor,
security, and inclusivity.

Index Terms—Vibe Coding, Al-Assisted Software Develop-
ment, Generative AIl, Prompt Engineering, Agentic Coding Tools,
Secure-by-Design Coding

I. INTRODUCTION

Software development [1], [2] is undergoing a profound
shift as generative artificial intelligence moves from research
prototypes into mainstream engineering toolchains [3], [4],
[5]. Where writing new features once involved painstakingly
assembling scaffolding, wiring up build scripts, and hand-
crafting boilerplate, teams increasingly leverage large lan-
guage models to automate these repetitive tasks [6], [7].
Modern Al agents can parse high-level requirements, tra-
verse existing repository histories, and generate fully func-
tional code—including data models, business logic, and user-
interface components—in a matter of seconds [8], [9], [10].
This acceleration not only compresses prototyping cycles from
days to hours but also reshapes the balance of effort across the
software lifecycle: developers spend less time on mechanical
implementation and more on defining system behaviors, edge-
case requirements, and performance constraints [11], [12].
In parallel, organizations face mounting pressure to deliver

P.P. Ray is with Department of Computer Applications, Sikkim University,
Sikkim, India. Email: ppray @cus.ac.in

secure, compliant, and maintainable applications at scale, cre-
ating an urgent imperative to understand how best to harness
AT’s productivity gains without introducing hidden technical
debt or governance risks [13], [14], [15].

At the forefront of this evolution lies the concept of vibe
coding [16], an approach that elevates natural-language direc-
tives from informal comments to the primary interface for soft-
ware specification [17], [18], [19]. Unlike conventional code-
completion tools that suggest isolated tokens or snippets based
solely on local context, vibe-coding platforms orchestrate
sophisticated multi-agent workflows [20], [21], [22]. These
systems combine RAG—where relevant code fragments [23],
[24], API documentation, and architecture decision records are
fetched from vector indices—with dynamic context manage-
ment that adjusts prompt windows in real time to prioritize
salient information [25], [26]. Downstream validation steps,
such as automated linting, compiler checks, and unit-test
generation, are woven into the pipeline to ensure that each
iteration meets organizational style guides, security policies,
and quality gates [27], [28], [29], [30]. As a result, a single
conversational exchange— “Create a resilient microservice in
Go with rate-limiting, structured logging, and Prometheus
metrics”—can yield a complete project template, instrumented
code, and accompanying test suite, all while tracking estimated
token usage and cost overhead [31], [32].

Despite the rapid emergence of agentic Integrated Devel-
opment Environment (IDE) extensions, command-line inter-
faces, and browser-based assistants, the ecosystem remains
fragmented and users lack clear guidance on how to integrate
these tools into existing workflows [33], [34], [35]. Some
teams have observed dramatic reductions in development
time, while others grapple with hallucinated APIs, inconsis-
tent coding patterns, and a proliferation of unreviewed test
cases. Moreover, the promise of Al-driven productivity must
be balanced against organizational concerns around security
compliance, intellectual-property management, and the preser-
vation of developers’ core problem-solving skills. Without a
systematic framework to compare capabilities, surface best
practices, and identify failure modes, enterprises risk adopting
point solutions that generate brittle code or undermine long-
term maintainability [36], [37], [38]. This review seeks to
fill that gap by mapping the fundamental principles of vibe
coding, surveying representative tools, distilling practitioner-
focused recommendations, and charting the key challenges and
research avenues necessary to make intent-driven development
both robust and trustworthy. Table I presents list of abbrevia-
tions and their full forms in this article.

To address these gaps, this paper presents a comprehensive
survey of vibe coding. Our work has four principal aims:

e To define the fundamental principles and workflow of
vibe coding as an intent-driven development paradigm.

o To survey and contrast representative Al-driven coding
tools and platforms that embody vibe coding.

o To distill practitioner-focused guidelines—highlighting
benefits, best practices, and common pitfalls—in adopting
vibe coding.

o To identify the principal technical and organizational
challenges and articulate concrete directions for future
research and tool development.

Our main contributions are:

e A comprehensive model of vibe coding is articulated,
illustrating how high-level natural-language intent can
drive end-to-end code generation, validation, and deploy-
ment.

o Leading agentic IDE extensions, CLI assistants, and
browser-based agents are systematically reviewed and
compared in terms of architecture, context handling, and
validation mechanisms.

o Actionable recommendations are proposed—spanning
speed, democratization, quality assurance, and human-
in-the-loop integration—along with practical “do’s and
don’ts” to guide successful adoption of vibe coding.

« Key challenges such as hallucinations, security vulnera-
bilities, and skill degradation are systematically identified,
and a prioritized research and engineering roadmap is
outlined to support the development of robust, secure,
and inclusive vibe coding ecosystems.

The remainder of this paper is organized as follows.
Section II surveys existing literature on Al-augmented cod-
ing. Section III introduces our core definitions, the delega-
tion—pairing spectrum, and the vibe-coding workflow model.
Section IV reviews state-of-the-art tools, presents benchmark
results, and examines industrial adoption patterns. Section V
discusses practical benefits, usage guidelines, and best prac-
tices. Section VI analyzes the principal obstacles to reliable
adoption. Section VII outlines future research avenues. Finally,
Section VIII synthesizes our findings and offers recommenda-
tions for both research and practice.

II. RELATED WORKS

The burgeoning paradigm of “vibe coding,” wherein devel-
opers largely relinquish direct manipulation of source code in
favor of natural-language interactions with advanced LLMs,
has sparked an extensive body of research examining its
implications across diverse domains. Originally coined by
Karpathy to describe a mode of development in which one “ac-
cepts all” Al-generated diffs, offloads error resolution entirely
to models like Cursor Composer with Sonnet, and eschews
manual review in pursuit of an almost ethereal workflow, “vibe
coding” foregrounds the notion of seamless human-—agent
collaboration, albeit at the risk of runaway code complexity
and unvetted logic [39]. In the field of medical education,
Chow and Ng demonstrated how Al-enabled no-code “vibe
coding” platforms empower clinical educators—who often
lack formal programming expertise—to rapidly prototype in-
teractive simulations such as a Differential Diagnosis Trainer

TABLE I:

List of Abbreviations and Their Full Forms

Abbreviation Full Form

ACU Active Compute Unit

ADR Architectural Decision Record

Al Artificial Intelligence

API Application Programming Interface

ASR Automatic Speech Recognition

AST Abstract Syntax Tree

BDD Behavior-Driven Development

CcCcC California Consumer Privacy Act

CDN Content Delivery Network

CERT Computer Emergency Response Team (Coding Standards)
CI Continuous Integration

CI/CD Continuous Integration / Continuous Deployment
CLI Command-Line Interface

CoFI Co-Creative Framework for Interaction Design
CRDT Conflict-free Replicated Data Type

CRUD Create, Read, Update and Delete

CSCW Computer-Supported Cooperative Work

CSS Cascading Style Sheets

DAST Dynamic Application Security Testing

DDD Domain-Driven Design

DB Database

DAP Debug Adapter Protocol

DRY Don’t Repeat Yourself

EEG Electroencephalography

FaaS Function-as-a-Service

GDPR General Data Protection Regulation

GPT Generative Pre-trained Transformer

GUI Graphical User Interface

HCI Human—Computer Interaction

HIPAA Health Insurance Portability and Accountability Act
HTML HyperText Markup Language

IAST Interactive Application Security Testing

IDE Integrated Development Environment

IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
ISO International Organization for Standardization
JS JavaScript

JSON JavaScript Object Notation

JWT JSON Web Token

LLM Large Language Model

LoRA Low-Rank Adaptation

LSP Language Server Protocol

MCP Model Context Protocol

MISRA C Motor Industry Software Reliability Association C Guidelines
MVC Model-View—Controller

NASA-TLX NASA Task Load Index

NoSQL Not Only SQL

NPM Node Package Manager

OCR Optical Character Recognition

OAuth2 Open Authorization 2

OWASP Open Web Application Security Project

PCI DSS Payment Card Industry Data Security Standard
PRD(s) Product Requirement Document(s)

RAG Retrieval-Augmented Generation

RBAC Role-Based Access Control

REPL Read—-Evaluate—Print Loop

REST Representational State Transfer

RLHF Reinforcement Learning with Human Feedback
SaaS Software as a Service

SAML Security Assertion Markup Language

SAST Static Application Security Testing

SBOM Software Bill of Materials

SCIM System for Cross-domain Identity Management
SDK Software Development Kit

SLSA Supply-chain Levels for Software Artifacts
SPA Single-Page Application

SQL Structured Query Language

SSL Secure Sockets Layer

SSG Static Site Generation

SSO Single Sign-On

SUS System Usability Scale

TPE Tree-structured Parzen Estimators

TS TypeScript

Ul User Interface

URL Uniform Resource Locator

UX User Experience

VM Virtual Machine

VS Code Visual Studio Code

YAML YAML Ain’t Markup Language

and metabolic dynamic models, thereby bridging the gap
between theoretical knowledge and real-world clinical deci-
sion making [40]. Parallel advances in engineering design
integration have been reported by Ghosh, who introduced
Vibe Engineering Automation (VEA) and Vibe Engineering
Orchestration (VEO) to automate discipline-specific tasks and
enforce cross-disciplinary harmonization within EPC projects,
reducing design cycle times by nearly half and cutting re-
work through Al-driven dependency mapping and compliance
checks [41]. The challenge of quantifying the qualitative
“vibes” of different LLMs has been rigorously addressed by
Dunlap et al. in their VibeCheck system, which identifies
and measures stylistic and tonal model traits—such as hu-
mor, directness, or contemplative depth—aligning them with
human preferences and revealing, for instance, that Llama-3-
70b’s more conversational tone outperforms GPT-4 in certain
summarization tasks [42]. Against this backdrop, Taulli’s com-
prehensive overview of Al-assisted programming elucidates
the foundational mechanisms of transformers and prompt
engineering, surveys leading tools from GitHub Copilot to
Amazon CodeWhisperer, and prescribes best practices for in-
tegrating Al across planning, coding, testing, and deployment
stages [43]. From the perspective of platform accessibility,
Lewis’s narrative of a novice’s foray into iOS and Android
development with LLM assistance reveals that while Xcode
and TestFlight pipelines benefit from intuitive voice- and text-
based AI queries, Android’s Gradle-driven environment still
imposes cognitive friction despite Al support, underscoring
the uneven democratization of mobile development [44].

Documentation remains a pivotal enabler of effective Al-
driven coding; Wijaya et al. introduced ReadMe.LLM, a doc-
umentation paradigm tailored to LLMs that, when appended
to prompts, elevates code generation accuracy to near-perfect
levels by providing model-oriented context that complements
traditional human-focused READMEs [45]. The cultural reso-
nance of “vibes” extends beyond coding: Brown et al. con-
ceptualized “funed advertising” to describe algorithmically
curated ad flows that optimize for affective resonance rather
than discrete user profiles, highlighting parallels between AI’s
semantic fluency in code and its modulation of content to
match user “vibes” in social media contexts [46]. In the
humanities, Bajohr’s edited volume contends that Al should
not merely be an object of critique but a tool “to think with,”
employing generative models’ pattern-recognition capacities
to provoke fresh insights into aesthetics, language, and his-
torical interpretation, thereby operationalizing concepts like
Stimmung and vibe as analytical constructs rather than mere
whims [47].

Educational hackathons, too, have embraced Al: Sajja and
colleagues studied generative AI’s impact on participant col-
laboration and ethical decision making at the University of
Iowa Hackathon, noting that Al tools can accelerate proto-
typing while raising novel considerations around academic
integrity and bias in team decision processes [48]. In the
domain of industrial design, Theijse’s investigation into image-
based Al tools revealed that misalignment between designer
semantics and model representations can be mitigated through
co-creative labeling sessions, which improved shared vocabu-

lary alignment by over 30% and enabled low-rank adaptation
models to internalize tacit design knowledge [49]. The reflec-
tive dimension of human—AlI co-creation in the arts has been
explored by Ford et al., who documented how composers inte-
grating Markov Chains and variational autoencoders into their
workflows paused to reflect on Al outputs, revealing dynamic
shifts in agency as they curated generative suggestions to shape
musical futures [50].

At the intersection of literacy and Al, de Roock’s au-
toethnographic study of ChatGPT in writing education sur-
faces the risk that generative tools, imbued with legacies of
linguistic bias, can perpetuate white supremacist language
patterns unless checked by critical pedagogical frameworks
that foreground abolitionist stances and examine the ecolog-
ical impact of Al on humanistic knowledge production [51].
Towards interpretable Al, Kamal et al. proposed an explainable
code summarization approach that transforms code’s Abstract
Syntax Tree (AST) into probabilistic parse trees and applies
layerwise relevance propagation and Takagi—Sugeno fuzzy
logic to reveal the rationale behind token-to-text mappings,
thereby addressing the black-box opacity of transformer-based
summarizers [52].

The development of end-user Al authoring tools in public
service contexts is epitomized by Zheng et al.’s AgentBuilder,
a conversational-agent prototype enabling library professionals
to create domain-specific chatbots without coding skills; their
evaluation surfaced five critical user criteria—ranging from in-
tent interpretation to authoritative source alignment—offering
design heuristics for future non-technical creator tools [53].
In the realm of interactive livestreaming, Yin and Xiao’s
VIBES system harnessed viewers’ spatial interactions—clicks
and pointer movements—as real-time input to streamed ap-
plications, demonstrating enhanced engagement and novel
participatory dynamics in digital performance environments
[54]. Reflecting on human—AI agency, Rafner et al. employed
think-aloud protocols during image generation and creative
writing tasks to articulate how users negotiate control, auton-
omy, and ownership, leading to their Co-Creative Framework
for Interaction Design (CoFI), which delineates interaction
affordances that bolster creative self-efficacy [55].

Video podcast creators have likewise benefitted from Al:
Wang et al.’s PodReels tool supports the extraction and editing
of teaser content from hour-long recordings, significantly
lowering mental effort and production time by integrating Al-
guided clip selection with human-curated storytelling flows
[56]. In music, Kim, Lee, and Donahue’s Amuse assistant
translates multimodal stimuli—images, narrative texts, existing
music—into coherent chord progressions via an LLM-based
noisy suggestion pipeline filtered by a chord model, thereby
operationalizing cross-modal creative inputs into structured
musical outputs [57]. Within statistical computing, Gorecki
showcased how pair programming with an LLM fine-tuned for
mathematical discourse enabled the collaborative development
of copula sampling and estimation code across MATLAB,
Python, and R, illustrating that careful human oversight and
prompt engineering can compensate for model knowledge gaps
and yield production-grade analytical scripts [58].

Popular media coverage, such as Roose’s New York Times

article, has highlighted the democratizing power of “vibecod-
ing,” where individuals with no coding background can realize
bespoke applications through platforms like Bolt, Cursor, or
Replit, while also acknowledging the necessity of human
vigilance to correct Al missteps and curtail hallucinations
[59]. Finally, comprehensive overviews like Kumar’s Medium
guide categorize the rapidly expanding ecosystem of vibe
coding tools—from full-stack builders and Al-enhanced ed-
itors to specialized VS Code extensions—mapping their Day
0 prototyping strengths and Day 1+ maintenance limitations,
and projecting the maturation of agentic tooling as a force
reshaping the very boundaries of who can code and how [60].
Collectively, these works chart the multifaceted landscape of
Al-enabled development, from empirical studies of user expe-
rience and domain adaptation to the theoretical underpinnings
of interpretability, ethics, and collaborative agency, laying
the groundwork for future innovation in “vibe coding” and
beyond. Table II presents summary of related works.

A. Lessons Learned

Through our comprehensive exploration of vibe coding,
several overarching insights emerge that carry immediate
relevance for both researchers and practitioners. First, the
efficacy of conversational, prompt-driven development crit-
ically depends on the availability of high-quality, model-
oriented documentation and context embeddings; without cu-
rated README-like artifacts tailored to the AI’s consumption,
code generation accuracy and reliability suffer markedly. Sec-
ond, human—AlI collaboration workflows must account for cog-
nitive ergonomics and trust dynamics: interfaces that surface
Al confidence scores, provenance metadata, and inline expla-
nations foster developer oversight and reduce the risk of uncrit-
ically accepting hallucinated or insecure suggestions. Third,
automated quality assurance—encompassing static analysis,
dynamic fuzz testing, and security scanning—cannot be an
afterthought; it must be deeply integrated into continuous
integration pipelines to detect code smells, enforce style con-
formity, and mitigate supply-chain vulnerabilities introduced
by Al-suggested dependencies. Fourth, maintaining developer
agency and tacit knowledge requires bidirectional handoffs
between human intent and Al action, supported by mixed-
initiative controls that allow seamless takeover and refine-
ment. Fifth, adaptive personalization—Ieveraging reinforce-
ment learning with human feedback and contextual bandit
algorithms—shows promise in tailoring suggestion ranking
and generation parameters to individual coding styles and
project conventions, but demands careful balance to avoid
echo-chamber effects. Finally, cross-disciplinary collaboration
among software engineering, human—computer interaction,
systems engineering, and ethics experts is essential to establish
standardized evaluation frameworks, domain-specific bench-
marks, and secure-by-design fine-tuning strategies.

B. Novelty of the Review

This article constitutes the first scholarly review dedicated
entirely to the phenomenon of vibe coding, presenting an
integrative synthesis of its theoretical underpinnings, practical

tool ecosystem, and empirical findings across diverse domains.
Distinct from prior overviews of Al-assisted programming
that treat code completion or pair programming as isolated
features, our work articulates a unified conceptual frame-
work that encapsulates core elements such as natural-language
prompt engineering, mixed-initiative agent orchestration, and
model “vibe” dimensions. We map over twenty state-of-the-art
tools—ranging from full-stack no-code builders and visual app
generators to command-line utilities and IDE plugins—onto a
taxonomy of Day-0 prototyping versus Day-1+ maintenance
scenarios, revealing capability gaps in version control, long-
term collaboration, and multi-agent coordination. Furthermore,
we incorporate insights from adjacent fields including clinical
simulation, engineering orchestration, design co-creation, and
educational hackathons to surface cross-cutting challenges
around security, maintainability, skill atrophy, and regulatory
compliance. Methodologically, we propose a multidimensional
evaluation framework that extends standard correctness and
performance metrics to include architectural conformance
measures, human-centered usability indices, and security ro-
bustness tests.

ITI. VIBE CODING FUNDAMENTALS
A. Defining Vibe Coding

Vibe coding represents a paradigm shift in software engi-
neering, where high-level natural language specifications be-
come the primary interface for driving end-to-end development
workflows [61], [62], [63], [64]. At its core, vibe coding
platforms translate conversational prompts or structured in-
tent descriptions into coherent code artifacts, leveraging an
ensemble of specialized LLMs and RAG techniques [65],
[66], [67]. Unlike traditional Al-coding assistants that focus
on token-level completions or static snippet recommendations,
vibe coding systems orchestrate multi-agent pipelines: one
agent may parse the prompt into an AST scaffold, another
selects appropriate design patterns and library dependencies,
and yet another generates comprehensive test suites and CI/CD
configuration. These agents communicate via a shared context
memory—often implemented as a versioned vector store—that
persists project state across sessions, enabling iterative refine-
ment without losing sight of global application architecture
[68], [69].

Key characteristics of vibe coding include the capacity for
adaptive context management, where the system dynamically
adjusts its context window to encompass relevant source files,
API documentation, and external knowledge bases, thereby
reducing hallucination rates in large codebases [70], [71], [72].
Furthermore, guardrail mechanisms based on static analysis
rules, lint configurations, and security policy manifests ensure
that generated code adheres to organizational standards (e.g.
Open Worldwide Application Security Project (OWASP)',
Payment Card Industry Data Security Standard (PCI-DSS)?).
Developers interact with the system in a directive role: they
define acceptance criteria, review Al-generated diffs via pull
requests, and fine-tune prompt parameters rather than manually

Uhttps://owasp.org/
Zhttps://www.pcisecuritystandards.org/

TABLE II: Summary of Related Research Contributions

Reference | Domain / Application Interaction Modality Core Contribution Limitations / Challenges
[39] General coding workflows Voice & conversational | First-person account of “vibe coding” in | Hallucinations, lack of code comprehension
prompts practice
[40] Clinical education simula- No-code conversational Differential Diagnosis Trainer & Requires domain-specific refinement, tool
tions prototyping insulin—glucose simulator generalization
[41] EPC (Engineering/Procure- | NL prompts for design | VEA for task automation; VEO for integra- | Data interoperability, workforce upskilling
ment/Construction) tasks & orchestration tive clash detection
[42] LLM evaluation Automated vibe discovery VibeCheck system quantifying stylistic dif- Aligning discovered “vibes” with human
& LLM judges ferences preference
[43] Software engineering prac- LLM-augmented IDE inte- Comprehensive guide on prompt engineering, High-level coverage; not specific to vibe cod-
tice gration Copilot, testing workflows ing
[44] Mobile app development LLM-assisted code genera- Comparative narrative of iOS vs Android Platform heterogeneity, dependency manage-
for novices tion onboarding ment friction
[45] Library documentation for | Embedding curated docs ReadMe.LLM format boosting model accu- Maintenance overhead for LLM-oriented
LLMs into prompts racy to near-perfect documentation
[46] Digital advertising Algorithmic content tuning Conceptualization of tuned advertising rhyth- Transferability of “vibe” concept beyond me-
(“vibes”) mic flows dia contexts
[47] Humanities research Al-driven conceptual anal- “Thinking with AI” framework reframing hu- Abstract framing; direct coding applications
methodologies ysis manistic inquiry limited
(48] Hackathons & education Generative Al tool integra- Evaluation of AI’s impact on hackathon effi- Ethical considerations, balancing Al use with
tion ciency & ethics learning
[49] Industrial design Co-creative image labeling Improved perceptual alignment, low-rank User control misalignment, model inter-
sessions adaptation of AI models pretability
[50] Music composition Think-aloud reflection on Characterization of reflection practices in Al- Domain specificity; generalizing reflection
AIGC usage assisted composition findings
[51] Literacy & writing Chatbot autoethnography Critical analysis of bias and linguistic Embedded biases; challenges in equitable
supremacy in generative Al code generation
[52] Code summarization AST-based explainable | Transparent mapping from code tokens to | Complexity of encoding/decoding pipelines
summarization natural language via XAl
[53] Public libraries End-user conversational | AgentBuilder enabling non-AI experts to | Trust calibration, interpretation of user intent
agent builder craft chatbots
[54] Livestream interaction Mouse-driven spatial input VIBES system turning viewer clicks into | Latency, mapping accuracy in real-time con-
live-app control signals texts
[55] Creative writing & image Think-aloud co-creative CoFI framework delineating agency dimen- Ownership ambiguity, dynamic agency fluc-
generation protocols sions in human—AlI creation tuations
[56] Video podcast editing Human-AI teaser co- PodReels tool reducing mental workload in Manual refinement remains necessary
creation clip selection
[57] Songwriting Multimodal LLM input | Amuse assistant converting multimodal stim- Noisy suggestions require filtering by uni-
(image/text/audio) uli into chord progressions modal models
[58] Statistical modeling Pair programming with Collaborative development of copula simula- Prompt-engineering pitfalls, need for expert
ChatGPT tion code across languages oversight
[59] Popular technology jour- Natural-language prompt | Case study demonstrating Al democratization Editorial perspective; oversight and error cor-
nalism experiments of software creation rection still required
[60] Vibe coding tool landscape Comparative tool taxonomy Survey of Day-0 vs Day-1+ tool capabilities Gaps in version control, long-term project
& classification maintenance

writing boilerplate [73], [74], [75]. This transformation shifts
cognitive load away from syntax and repetitive implementation
details toward high-level domain modeling, system design, and
integration strategy [76], [77]. In sum, vibe coding unifies
design, implementation, and validation into a seamless, intent-
driven process—elevating natural language from mere docu-
mentation to the principal medium of software composition
[781], [79].

In a “vibe-coding” environment, the end-user begins by
entering a natural-language instruction—together with op-
tional attachments, pre-prompts or community-sourced tem-
plates—into a unified front-end prompt box. That input is
first handled by a suite of developer “agents” (browser-based
widgets, IDE plugins, command-line tools or mobile apps),
which relay it to a dedicated prompt-engineering tier where
curated libraries, version control, debug harnesses and best-
practice snippets enrich and validate the request. Next, an
integration layer coordinates with CI/CD pipelines, design im-
ports, databases, payment gateways and automation services to
assemble necessary project artifacts. A stack-selection engine
then scaffolds boilerplate for the user’s chosen web frame-
work—such as Next.js, Astro, Remix or SvelteKit—while
a Model-Context-Protocol (MCP) bus provides standardized
routing, context-aggregation and streaming interfaces to a

range of large-language models. Generated code flows back
through the integration layer into automated deployment and
operations—complete with rollbacks, scaling, access control,
backups and public/private hosting—before being rendered
once again in the user’s interface. Throughout this cycle, a
feedback and observability subsystem continuously harvests
usage metrics, logs, alerts and direct user comments, feeding
incidents back into the prompt-engineering layer for iterative
refinement. The result is a closed-loop development ecosystem
in which natural-language prompts drive end-to-end applica-
tion creation while built-in monitoring and versioning ensure
that every iteration becomes more robust, performant and
aligned with real-world user needs. Figure 1 shows the basic
vibe coding scenario in practice.

B. Delegation—Pairing Spectrum

The delegation—pairing spectrum in Al-augmented soft-
ware development defines a graduated set of interaction
paradigms ranging from fully autonomous agentic workflows
to purely consultative advisory roles [80], [81], [82]. At the
extreme “full delegation” end, a comprehensive orchestration
layer—often implemented with a multi-agent framework such

as LangChain® or AutoGen*—ingests a high-level specifica-
tion and, through hierarchical task planning, decomposes it
into discrete sub-tasks. Each sub-task is dispatched to a dedi-
cated specialist model: a code-generation LLM for scaffolding
modules, a schema-synthesis engine for database design, a
test-authoring model for Behavior-Driven Development (BDD)
[83], [84], [85], [86] artifacts, and an infrastructure-as-code
agent for Terraform or Kubernetes manifests. This pipeline
is typically coupled to a CI/CD back end (e.g. Jenkins’,
GitHub Actions®, or GitLab CI”) so that upon agent commit,
automated runners execute unit and integration suites, invoke
static analysis (e.g. ESLint®, SonarQube®), and perform de-
pendency vulnerability scans (e.g. using OWASP Dependency-
Check). For low-novelty tasks—such as Create, Read, Update,
and Delete (CRUD) microservices or standardized Ul compo-
nents—the resulting throughput can exceed human-only teams
by an order of magnitude, provided that acceptance criteria
are precisely defined in machine-readable form (e.g. OpenAPI
specs'?, GraphQL schemas'!, JSON Schema'?).

Stepping inward, “guided delegation” retains much of the
automation from full delegation but interposes human check-
points aligned with Guideline for RepOrting Vignette Exper-
iments (GROVE)'*’s frequency-of-reporting mandates [87].
Developers supply configuration manifests (e.g. YAML!4,
JSONnet!®) that codify architectural patterns (hexagonal, mi-
crokernel), enforce security baselines (e.g. CIS benchmarks'®,
PCI-DSS rules'’), or set performance budgets for critical
paths. As the agent executes each phase, it generates incre-
mental pull requests that include semantic diff summaries,
test coverage reports, and performance regression metrics. The
human reviewer can then merge, rollback, or refine the agent’s
output before allowing the pipeline to proceed. Internally, dy-
namic context-window management and Retrieval-Augmented
Generation (RAG) [88], [89] ensure relevant code snippets and
documentation are surfaced, reducing hallucination risk even
as the codebase scales beyond the LLM’s native token limit
[90], [91].

In the “active pairing” modality, the Al functions as a
real-time collaborator intimately woven into the developer’s
IDE—whether through Language Server Protocol (LSP) [92]
integrations or specialized agent plugins. As the developer
edits code, the agent maintains synchronized ASTs and se-
mantic embeddings [93], offering suggestions that span sim-
ple auto-completions to complex refactorings [94], [95] (e.g.

3https://www.langchain.com/
“https://github.com/microsoft/autogen
Shttps://www.jenkins.io/
Ohttps://github.com/features/actions
"https://docs.gitlab.com/ci/

8https://eslint.org/
%https://www.sonarsource.com/products/sonarqube/
10https://swagger.io/specification/
https://graphql.org/learn/schema/
2https://json-schema.org/
Bhttps://www.equator-network.org/reporting-guidelines/
https://yaml.org/

Shttps://jsonnet.org/
16https://www.cisecurity.org/cis-benchmarks
7https://www.pcisecuritystandards.org/pdfs/pci_ssc_quick_guide.pdf

extract method, inline dependency injection [96], [97]). Inline
feedback channels allow immediate clarification dialogues and
contextual unit test generation triggered by detected code
patterns. This form of continuous, bidirectional interaction
is particularly valuable for high-novelty or architecture-heavy
tasks, where the developer steers the agent’s creativity and
ensures alignment with system-level invariants.

At the consultative extreme, “expert consultation” positions
the Al as a domain-knowledge oracle. Queries such as “Eval-
uate the trade-offs between eventual consistency and strong
consistency for this distributed cache design” yield structured
decision matrices, pseudocode prototypes, and references to
formal proofs or RFCs. There is no automatic code commit;
rather, the agent’s role is to augment human judgment, provid-
ing evidence-backed insights that feed into design documents,
ADRs, and technical Request for Comments (RFCs) [98].

The modern platforms can dynamically adjust their position
on this spectrum via risk-adaptive controllers. Metrics such
as prompt-success rate, semantic drift in generated code, and
anomaly detection in Continuous Integration (CI) logs feed
back into an orchestration layer that modulates autonomy
levels in real time. For instance, a spike in static analysis viola-
tions may automatically trigger a shift from full delegation to
guided delegation, reinstating human review gates. Telemetry
data—captured through IDE plugins, API request logs, and
test result dashboards—enables fine-grained calibration of
agent confidence thresholds. Governance policies codified in
policy-as-code frameworks (e.g. Open Policy Agent!®) enforce
compliance at each stage, ensuring that the chosen delegation
mode aligns with organizational risk appetites and regulatory
requirements.

C. Related Concepts

This subsection contextualizes vibe coding by surveying
adjacent paradigms that share its goal of streamlining soft-
ware creation. It highlights no-code/low-code platforms, which
empower users through visual interfaces; chat-oriented and
conversational systems, where development unfolds via in-
teractive Al dialogue; prompt-based workflows, which treat
natural-language instructions as first-class build artifacts; and
traditional Al-assisted coding, exemplified by autocomplete
and snippet suggestions. Together, these concepts frame the
broader landscape of Al-driven, abstraction-focused develop-
ment methodologies.

1) No-Code or Low-Code: No-code and low-code plat-
forms represent a complementary paradigm to vibe coding,
aiming to democratize application development by abstracting
underlying implementation details behind graphical interfaces
and configurable building blocks. In no-code environments,
end users construct workflows, data models, and user inter-
faces entirely through drag-and-drop editors, property panes,
and visual connectors. Low-code platforms extend this model
by exposing hooks for custom code—in JavaScript, Python,
or proprietary scripting languages—enabling professional de-
velopers to integrate bespoke business logic, third-party APIs,
or complex algorithms when the out-of-the-box components

8https://www.openpolicyagent.org/

-

Ul Layer Feedback and Observability Layer Deployment and Operations Layer

i

(_ Metrics »(Monitoring) C Cl/CD)(Alerts) ®
© C Rollbacks O C AuthN/AuthZ)
[©) (Monitoring) (Backups)
Updates (User Feedback)« Incident) (Auto-Scaling) (_ Hosting (Public/Private))
O]

@
—»| Prompt Box Tool Layer Prompt-Engineering Integration Layer Stack Engine Layer MCP Layer
<ED-— Layer C Cl/CD) ® C Next.js) MCP Host
User IDEs and Editors Giompttibiam, (Sketch Imports) p=p{ (Astro) MCP Client
CLI R lonDaistony (Database Access) © (Remix) MCP Server
Plugin/Extensions Debugger (pPayment)| | Anguar) SSE/STDIO
L/ Mobile Apps (Authorization) (Qwik) JSON-RPC
Task Management Best-Snippets (Automation) (SvelteKit) Context Aggregation

Attachments
olo

LLM Provider Layer

\/ Q OpenAl) C Anthropic) C Ollama) C XAl) (_ AWS Bedrock D»

Fig. 1: Basic vibe coding scenario

prove insufficient. Both approaches leverage metadata-driven feedback, a closed-loop observability system captures insights
architectures, where declarative definitions of entities, re- that feed back into the prompt library—automatically improv-
lationships, and Ul elements are compiled into executable ing snippets and test cases. In both CHOP and vibe-coding,
code or interpreted at runtime by a universal engine [99], natural-language conversations replace manual coding chores,
[100]. This metadata layer facilitates rapid prototyping and while deep integration with orchestration, deployment, and
maintenance but introduces challenges in debugging, perfor- observability layers transforms raw chat into production-grade
mance optimization, and fine-grained security controls. Un- software with continuous, Al-driven refinement.
like vibe coding—which operates through natural-language 3) Conversational Programming System: Even in its era,
prompts interpreted by large language models—no/low-code IBM’s Conversational Programming System (CPS) embodied
platforms rely on constrained visual grammars that ensure the core principles of today’s “vibe-coding” platforms. Imag-
syntactic correctness at the expense of expressiveness. Fur- ine CPS re-engineered for 2025: a chat-style terminal where
thermore, while vibe coding can generate multi-tier archi- each PL/I or BASIC line acts like a natural-language prompt,
tectures from descriptive specifications, no/low-code tools immediately parsed by an interpreter that flags syntax errors
often restrict developers to predefined templates and patterns, in real time—much as modern LLMs stream incremental
limiting scalability and portability across different technology code suggestions. Submitting a JCL batch job becomes a
stacks [101], [102]. Nevertheless, both paradigms converge built-in integration hook, akin to today’s one-click CI/CD
on the goal of reducing boilerplate and lowering the barrier pipelines, while the privileged “control mode” resembles an
to software creation, making them increasingly interoperable: operations dashboard, letting administrators message users,
modern no/low-code suites are embedding Al assistants to inspect sessions, or rollback environments on demand [104],
translate natural-language requirements into component con- [105]. On the Model 50, CPS’s firmware-assist for the EVAL
figurations, blurring the distinction between visual develop- stack anticipates edge-deployed quantized models: heavy lift-
ment and prompt-driven coding. ing done locally to drive an ultra-responsive developer ex-
2) Chat-Oriented Programming: Chat-oriented program- perience. Terminals such as the IBM 1050 and 2741—with
ming (CHOP) parallels the “vibe-coding” model by elevat- their “break” feature—parallel today’s plugin-rich IDE Uls,
ing conversational interfaces to first-class development tools complete with live attachments and instant context switching.
[103]. Instead of typing code, engineers engage in an iterative User groups extending support to display consoles mirror mod-
dialogue with an Al assistant—submitting high-level requests, ern community-driven template libraries and theme markets.
refining sub-prompts, and merging responses back into their Through its “enter code — instant feedback — refine” loop,
codebase. Behind the scenes, each chat message is enriched CPS foreshadowed the closed-loop observability and prompt-
by a prompt-engineering layer: curated templates, versioned engineering cycles that underpin vibe-coding: usage metrics
histories, and automated test harnesses ensure consistency and and error logs feeding back into a snippet library that continu-
reduce hallucinations. These refined prompts travel over a ally sharpens every interaction. In this light, CPS can be seen
standardized MCP bus to one or more LLM back-ends, which not merely as a pioneering time-sharing system, but as the
stream incremental code suggestions or complete functions in mechanical prototype of today’s Al-powered, conversational
real time. Generated artifacts then flow into CI/CD pipelines, development ecosystems.
scaffolded by user-chosen frameworks, and are deployed with 4) Prompt-Based Development: Prompt-based development
built-in monitoring, scaling, and rollback capabilities. As the stands as a direct analogue to vibe coding by positioning
running application emits usage metrics, error logs, and user natural-language prompts at the heart of application assembly.

It hinges on three pillars: a disciplined prompt-engineering
practice, Al-driven UI scaffolding, and automated validation.
First, prompts are treated like code artifacts—stored in ver-
sioned libraries, governed via CI/CD pipelines, and refined
through telemetry-backed A/B testing—to ensure consistent
model behavior and minimize hallucinations [106]. Second,
front-end generators translate concise English descriptions into
framework-specific boilerplate and design assets, effectively
“scaffolding” complete components from intent alone. Third,
dedicated Al testing agents synthesize unit, integration, and
end-to-end test suites directly from prompts or generated
code, closing the loop on quality assurance. Underpinning this
workflow is rigorous prompt engineering: crafting templates
with system instructions, few-shot exemplars, and dynamic
context injections that guide large-language models toward
reliable outputs [107], [108]. Techniques such as chain-of-
thought prompting decompose complex Ul requirements into
intermediate reasoning steps, while soft-prompt tuning and
RAG leverage continuous embeddings and external vector
stores for real-time access to documentation and code snippets
[109], [110], [111]. By continuously harvesting runtime met-
rics and user feedback, prompt libraries evolve, feeding back
into the toolchain to sharpen every subsequent iteration. In this
way, prompt-based development mirrors vibe coding’s closed-
loop paradigm—shifting developers from typing boilerplate to
curating intent and orchestrating Al as a co-developer.

5) Traditional Al-Assisted Coding: In traditional
Al-assisted coding—think editor autocomplete or
IntelliSense—developers retain tight control over each
line of code. The AI's suggestions are treated as provisional:
engineers must inspect, validate, and often refine every
generated token to ensure correctness, maintainability, and
alignment with architectural constraints. As a result, trust
in the Al remains moderate; it speeds up routine tasks,
but substantive logic still requires human scrutiny [112].
Vibe coding inverts this relationship by design. Instead of
cautiously vetting every suggestion, developers adopt a “trust,
iterate, and adapt” mindset: prompts or high-level intents
are submitted, the AI returns complete functions, modules,
or even entire feature implementations, and those outputs
are immediately integrated into the codebase. Subsequent
passes focus on broad refactoring, live experimentation, and
rapid feedback loops—often driven by automated tests and
real-time monitoring—rather than painstaking line-by-line
review [113]. This shift elevates velocity: teams can spin
up prototypes, A/B test behaviors, or explore alternative
designs in minutes rather than days. Although it demands
robust observability and rollback mechanisms to catch
edge-case failures, vibe coding’s higher implicit trust in Al
outputs transforms software development into a series of
prompt-driven experiments, accelerating time to value while
leveraging continuous, feedback-driven refinement instead of
traditional, manual verification at every step [114]. Table III
shows comparison of the related terms of vibe coding.

D. Proposed Vibe Coding Modalities

Given the broad spectrum of implementations and interac-
tions possible, establishing a clear taxonomy is critical for

understanding the distinct modalities by which Al agents can
assist [115], [116], collaborate with, or autonomously handle
development tasks [118], [119]. The proposed content herein
categorizes these interactions into well-defined modalities, elu-
cidating the varying degrees of human oversight, automation,
multimodal interactions, and adaptive learning mechanisms
involved in modern Al-driven software engineering workflows
[120], [121], [122].

1) Full Delegation: In the full delegation paradigm, the
Al agent assumes complete responsibility for translating a
high-level specification into production-ready software without
human intervention in the code synthesis loop. The workflow
begins by parsing natural-language requirements—augmented
by domain-specific ontologies or JSON schemas—to construct
an internal task graph. Each node in this graph corresponds to
discrete sub-tasks, such as scaffolding a microservice [123],
[124], configuring an ORM layer, or generating API route
handlers with associated documentation. The system employs
transformer-based LLMs fine-tuned on code corpora to emit
syntactically correct, idiomatic code in multiple languages,
while specialized agents handle ancillary concerns like de-
pendency resolution (via semantic versioning and lockfile
updates), containerization (producing Dockerfiles or Kuber-
netes manifests), and CI/CD configuration [125], [126] for
automated builds and deployments. During synthesis, the agent
leverages automated test generation frameworks to create unit,
integration, and contract tests derived from acceptance criteria.
Upon completion, the system commits changes directly into
a feature branch, triggers build pipelines, and performs static
analysis, security scans (Static Application Security Testing
(SAST)/Dynamic Application Security Testing (DAST)), and
performance profiling before merging to protected branches.
Although this modality maximizes throughput, it demands
rigorous guardrails: formal verification for critical modules,
policy-as-code enforcement (e.g. OPA Gatekeeper [127]), and
anomaly detection in runtime telemetry to ensure that fully
delegated outputs meet organizational, regulatory, and relia-
bility standards.

2) Guided Delegation: Guided delegation strikes a balance
between the autonomy of Al agents and the strategic over-
sight of human engineers. Developers articulate fine-grained
“guardrails” through configuration manifests—often in YAML
or JSON—defining architectural patterns (such as layered
MVC or hexagonal architectures), coding style conventions,
and security policies. The Al leverages this metadata to drive
task-specific code transformations: adding structured logging
with correlation IDs in service methods, injecting circuit
breakers for resilience, or refactoring monoliths into domain-
driven microservices. Internally, the platform employs prompt
templating engines that merge developer-provided directives
with dynamic context extracted from the codebase’s AST
and dependency graph. At predefined checkpoints—configured
via RRULE-style schedules [128] or event hooks in the
CI/CD pipeline—the agent pauses, submits Al-generated pull
requests, and annotates diffs with natural-language rationales.
Engineers review these proposals, providing feedback that the
agent persists as reinforcement signals to refine subsequent
transformations.

TABLE III: Comparison of Al-Driven Development Paradigms

Paradigm Interaction Style Generated Artifacts Human Oversight Iteration Customization CI/CD Integration
Mech Level

No-Code / Low- Visual drag-and-drop Ul workflows, data Minimal (visual vali- Direct GUI edits, Low None or minimal
Code models, simple logic dation) property tuning
Chat-Oriented Pro- Conversational chat | Complete functions, Moderate (prompt | Prompt refinement, High Embedded (via
gramming with Al modules tuning) sub-prompt loops scripts)
Conversational Pro- Line-by-line Immediate code snip- High (syntax fixes) Real-time error cor- Medium Batch job submission
gramming System interpreter prompts pets, syntax feedback rection
Prompt-Based De- Structured natural- Scaffolded Moderate (prompt & Versioned prompt High Full (CI/CD
velopment language prompts components & test review) updates, telemetry- pipelines)

tests driven A/B tests
Traditional Al- Editor autocomplete Token-level comple- High (line-by-line re- Manual code correc- Medium Partial (IDE hooks)
Assisted Coding & snippets tions, small snippets view) tion & review

3) Active Pairing: Active pairing extends the classical
two-person pair programming model into a synchronous hu-
man—Al collaboration within the IDE. Here, the AI main-
tains a live representation of the developer’s workspace by
continuously ingesting keystrokes, parsing the current file’s
AST, and embedding contextual code vectors. As the devel-
oper writes or navigates code, the agent proactively suggests
context-sensitive completions, micro-refactorings, or archi-
tectural sketches through inline suggestions and hover-tool
explanations. The system integrates a bidirectional LSP'® that
feeds real-time diagnostics and patch proposals to the editor,
allowing developers to accept, modify, or reject code snippets
with single keystrokes or voice commands. Behind the scenes,
the Al employs attention mechanisms over the entire codebase
and external documentation to ensure consistency with existing
patterns. It also intercepts runtime errors and test failures
during iterative development, invoking stack-trace analyzers
to identify root causes and propose corrective patches. Com-
munication channels—ranging from integrated chat windows
to multimodal overlays—enable developers to ask the agent
design questions and request dependency-tree visualizations.

4) Expert Consultation: In expert consultation mode, the
Al agent functions as a domain-knowledge repository and
design advisor rather than an autonomous code generator.
Developers pose high-level inquiries—such as “Evaluate trade-
offs between event sourcing and traditional relational modeling
for this CRM system”—and the agent synthesizes structured
responses that draw on both its pre-trained model and curated
external sources. The output typically includes comparative
analyses, decision matrices illustrating CAP theorem implica-
tions or Command Query Responsibility Segregation (CQRS)
patterns [129], and pseudocode snippets demonstrating key
algorithmic steps. The agent may also reference specific library
APIs, configuration options, and example GitHub repositories
to guide implementation. Unlike delegation modes, expert
consultation does not directly modify the codebase; instead, it
enriches developer understanding, reduces research overhead,
and accelerates architectural alignment during design sprints.

5) Voice-Driven Multimodal Extensions: Voice-driven and
multimodal extensions represent the next frontier in devel-
oper—Al interaction, integrating speech, touch, and visual
interfaces to create an immersive coding experience. Natural-
language voice commands are captured by robust Automatic
Speech Recognition (ASR) [130], [131] systems optimized

19https://github.com/microsoft/language-server-protocol

for technical vocabularies, then parsed by a semantic intent
interpreter that maps colloquial instructions into formalized
prompts. Simultaneously, the Al renders interactive visual can-
vases—such as Unified Modeling Language (UML) diagrams,
dependency graphs, or live wireframe previews—where devel-
opers can manipulate components via drag-and-drop or pen
input on touchscreen devices. Multimodal fusion algorithms
[132] synchronize cross-modal inputs, aligning utterances like
“connect this service to the database” with the user’s recent
GUI actions to preserve workflow context. Haptic feedback
devices signal build successes, lint warnings, or security
alerts through tactile pulses, reducing disruption caused by
mode-switching. These environments leverage web-based We-
bAssembly [133] backends and RESTful APIs to maintain
low latency, enabling fluid back-and-forth between design and
code.

6) Continuous Learning and Personalization: Continuous
learning and personalization layers transform static Al as-
sistants into evolving collaborators that adapt to individual
developer preferences, team norms, and project conventions
over time. Through telemetry pipelines embedded in the IDE,
the system captures interaction logs—prompt formulations,
suggestion acceptance rates, manual overrides, and code re-
vision patterns—and feeds these as reinforcement signals into
online fine-tuning workflows. Lightweight parameter-efficient
tuning techniques (e.g. Low-Rank Adaptation (LoRA) [134]
or prefix-tuning[135]) update model weights incrementally,
biasing generation toward the project’s architectural style,
preferred design patterns, and naming conventions. Addi-
tionally, user-profile embeddings aggregate historical behav-
iors—such as frequently used libraries, code idioms, and
comment styles—enabling the agent to anticipate developer
needs and preemptively generate relevant code snippets. Per-
sonalization extends to UI preferences as well: theme choices,
window layouts, and shortcut mappings are learned to optimize
cognitive ergonomics.

E. Operational Foundations

This section delineates the foundational infrastructure,
workflows, and governance mechanisms required to embed
vibe coding into production environments—spanning from
context management and debugging automation to compliance
enforcement, extensibility, and organizational readiness. These
operational layers collectively support the transformation of
vibe coding from experimental tooling into a sustainable,
enterprise-grade software engineering paradigm.

1) Contextual Awareness: Effective vibe coding agents
must maintain an accurate model of the project’s evolving
state, requiring sophisticated context ingestion and long-term
memory strategies. As developers invoke successive prompts,
the agent must track file hierarchies, dependency graphs,
and variable scopes across hundreds or thousands of source
files. This often entails leveraging vector-embedding stores or
specialized RAG pipelines that index semantic representations
of code and documentation [136], [137]. By retrieving only
the most relevant snippets—based on similarity thresholds or
explicit developer annotations—the agent minimizes prompt
bloat and reduces the likelihood of hallucinations when dealing
with large codebases. Persistent “session memory” can be im-
plemented via checkpointed snapshots or incremental update
logs, allowing the Al to recall prior design decisions, coding
conventions, and architectural constraints established earlier in
the workflow [138]. Additionally, intelligent context window
management dynamically prunes low-relevance content and
prioritizes recent edits or modules flagged as high-importance,
ensuring the agent’s responses remain coherent and technically
accurate [139], [140]. T

2) Testing, Validation and Debugging: Integrating test gen-
eration and debugging workflows into vibe coding pipelines
is essential for producing production-ready code with mini-
mal human intervention [141], [142], [143]. Behavior-driven
prompts [144]—such as “verify that user login fails on invalid
credentials”—can be transformed into unit tests using frame-
works like Jest?®, PyTest?!, or JUnit?>?, complete with fixture
setup and teardown routines. For integration tests, agents can
orchestrate containerized environments via Docker Compose®?
or Kubernetes manifests’*, then auto-generate HTTP requests
or database transactions to validate end-to-end flows. On
the debugging side, agents employ stack-trace analysis to
pinpoint the origin of uncaught exceptions, suggesting precise
try-catch blocks or null-check guards to remediate runtime
errors. Advanced models can even propose instrumentation
hooks—such as log4;j calls or Prometheus counters—to gather
diagnostic metrics for intermittent failures. By automating the
creation of both positive and negative test cases, vibe coding
platforms embed quality assurance into the authoring process
rather than relegating it to a separate phase.

3) Compliance Guardrails: To uphold organizational se-
curity policies and regulatory standards, vibe coding agents
must incorporate static and dynamic analysis tools directly
into their prompt pipeline. Before emitting code, the system
intercepts generated artifacts and applies lint configurations
with tools like ESLint??, Pylint26, or Checkstyle27 to enforce
secure coding best practices and prevent injection vulnerabil-
ities. Concurrently, dependency manifests (e.g. package.json,
requirements.txt) are scanned against vulnerability databases

2Ohttps://jestjs.iof

2l https://pytest.org/

22https://junit.org/

Zhttps://docs.docker.com/compose/
24https://monokle.io/learn/kubernetes-manifest-files-explained
Zhttps://eslint.org/

26https://pylint.readthedocs.io/en/latest/
2Thttps://checkstyle.sourceforge.io/

such as the OWASP Dependency-Check or GitHub Advisory
Database to flag outdated or high-risk libraries. For compliance
with frameworks like PCI-DSS or HIPAA, agents can inject
guardrails—such as encryption middleware for sensitive data
in transit and at rest, or access control annotations using
OAuth2 scopes—automatically aligning implementation with
mandated controls. Where appropriate, the Al suggests threat
models and outlines remediation steps, offering built-in guid-
ance on secure configuration of frameworks and cloud services
[145], [146], [147], [148].

4) Version Control Integration: Seamless integration with
version control systems is a cornerstone of collaborative vibe
coding workflows. When developers invoke Al agents, each
modification can be encapsulated in feature branches, enabling
isolated experimentation without disrupting the mainline code.
The agent automatically generates pull request descriptions
summarizing high-level changes in plain language, annotates
diffs with rationale for each diff hunk, and assigns reviewers
based on module ownership or code-ownership metadata. In
scenarios where multiple colleagues invoke the agent on over-
lapping modules, sophisticated merge tools combine semantic
patching with conflict resolution strategies, employing tree-
based merging rather than naive line-based approaches to
reconcile divergent AST modifications. Interactive review ses-
sions integrate Al-generated inline comments that recommend
refactoring or performance improvements, streamlining the
peer review process [149]. As a result, teams maintain a
synchronized codebase, with the Al acting as both collaborator
and arbiter, reducing bottlenecks and ensuring that distributed
contributions coalesce into a coherent, high-quality product.

5) Extensibility Mechanisms: To accommodate diverse
project requirements, vibe coding platforms expose cus-
tomization layers enabling developers to define organization-
specific rulesets and architectural conventions. These mani-
fests—such as .cursorrules files?® or JSON-based agent con-
figurations—specify code style guidelines, naming patterns,
module decomposition strategies, and preferred dependency
versions. When processing prompts, the Al references these
rulesets to tailor its generation, ensuring consistency with
the team’s established practices. Furthermore, extensibility is
achieved through plugin frameworks that allow third-party
integrations—security scanners, domain-specific linters?, or
code-quality dashboards—to hook into the prompt lifecycle.
Custom plugins can intercept generated code, perform domain-
specific transformations, and feed back enriched context to the
Al for subsequent iterations.

6) Feedback Loops: Data-driven refinement of vibe cod-
ing agents relies on capturing comprehensive metrics across
the prompt-to-result lifecycle [150], [151]. Key perfor-
mance indicators such as suggestion latency, code accep-
tance rate, and frequency of manual overrides are logged
to analytics backends. Telemetry also tracks downstream
outcomes—compilation success, test pass rates, and post-
deployment defect incidence—to assess the quality of Al-
generated code in production. By correlating prompt formu-

Z8https://dotcursorrules.com/
https://zulip.readthedocs.io/en/stable/testing/linters.html

lations with these metrics, machine learning pipelines can
identify prompt templates that consistently yield high-fidelity
outputs, refining the agent’s prompt engineering heuristics
[152]. Dashboards surface these insights to teams, highlighting
areas for process improvement or additional training. Con-
tinuous feedback loops enable real-time adaptation: the Al
model dynamically adjusts its response strategies based on
recent project performance, ensuring that evolving codebase
characteristics and shifting team priorities are reflected in
subsequent code generation.

7) Organizational Adoption Management: Successfully
scaling vibe coding across an enterprise demands deliberate
change management and governance structures. Training pro-
grams introduce developers to prompt authoring techniques,
secure development workflows, and best practices for leverag-
ing Al assistants. Communities of practice facilitate peer-to-
peer knowledge exchange, while steering committees oversee
policy enforcement, metric tracking, and vendor relationships.
Governance models define boundaries for agent use—such as
restricting generation of production-critical modules until a
maturity threshold is met—and create escalation paths for se-
curity or compliance exceptions. Pilot projects measure impact
on team velocity, defect density, and time-to-market, providing
quantitative justification for broader rollout. As usage expands,
organizations may evolve their software development lifecycle
to integrate Al readiness gates, require Al-assistant audit
trails, and revise performance evaluations to recognize prompt
engineering proficiency.

8) Developer Skill Evolution: The proliferation of Al-
assisted coding heralds the emergence of new specialist
roles—prompt engineers who craft optimal instructions, Al ar-
chitects who design agent workflows, and agent wranglers who
maintain model configurations and custom plugins. Traditional
developer roles evolve: software engineers increasingly focus
on system design, algorithm optimization, and ethical over-
sight, while less time is spent on boilerplate implementation.
Curricula at universities and corporate training pivot toward
human-Al collaboration principles, covering topics such as
prompt engineering best practices, Al safety, and model fine-
tuning. Upskilling pathways emphasize modular architecture
design, semantic versioning strategies, and Domain-Specific
Language (DSL) creation to guide Al agents effectively. As
these new competencies gain prominence, organizations recal-
ibrate hiring criteria, valuing experience in Al-augmented de-
velopment environments alongside conventional programming
expertise.

IV. STATE-OF-THE-ART

This section presents the current landscape of state-of-the-
art tools that define and drive the vibe coding paradigm. It
systematically explores browser-based environments, intelli-
gent IDEs and code editors, extensible plugins, command-line
assistants, and agentic task management systems—each con-
tributing to a seamless, context-aware, and LLM-augmented
development workflow. Together, these tools exemplify how
modern software engineering is evolving into a collaborative
process between human intent and Al execution.

A. Browser-based Tools

In this section, we examine a diverse set of cutting-edge
browser-based tools—each embodying the principles of “vibe
coding”—that redefine how developers, designers, and non-
technical users build, iterate, and ship production-grade soft-
ware through natural language interaction, intelligent automa-
tion, and seamless integration with modern cloud ecosystems.

1) Bolt.new: Bolt.new stands at the forefront of next-
generation web development by embedding a fully operational
full-stack environment directly into the browser, eliminating
the need for traditional local setups [153]. At the heart of
Bolt.new lies StackBlitz’s WebContainers technology [154],
which provisions a complete Node.js runtime—including
filesystem access, terminal operations, package management,
and live server execution—on the client side. Unlike typical
code-generation tools focused solely on frontend scaffolding,
Bolt empowers users to build end-to-end systems, allowing
installation of npm packages, server-side logic development,
database integration, and real-time API interaction without
ever leaving the browser. Powered by a dual-Al engine,
Bolt.new utilizes Anthropic’s Claude 3.5 Sonnet for di-
rect code manipulation and Google’s Gemini 2.0 Flash?®!
for intelligent conversational support within its “Discussion
Mode.” This enables the Al not only to scaffold applications
but also to monitor runtime errors, suggest targeted code
patches, manage project configurations, and handle system-
level tasks like server restarts or dependency updates. With
frameworks such as Next.js’2, Astro®}, Svelte’*, Remix®,
Vue.js*, and Angular’’ supported out-of-the-box, users can
tailor their applications across a broad spectrum of modern ar-
chitectures—from static websites to full server-rendered apps.
Storage, authentication, and backend services are seamlessly
integrated through partnerships with Supabase®, Firebase®,
and Netlify*®, while mobile app development is facilitated
via Expo integration. Bolt also supports embedded third-party
service connections, including Stripe for payments and Figma
for design system imports, ensuring comprehensive backend
and frontend orchestration from a single platform. A defining
technical feature of Bolt.new is its unique AI control model,
wherein the Al agent can perform real-time filesystem writes,
npm installations, server process management, and console
interaction. Unlike passive code assistants, Bolt operates with
operational autonomy, dynamically responding to application
states and iteratively refining the output until project require-
ments are met. In Discussion Mode, grounded web searches
enhance the AI’s responses, ensuring answers remain accurate,
relevant, and up-to-date. Deployment is streamlined through
a single chat instruction—triggering CI/CD workflows that

30https://www.anthropic.com/news/claude-3-5-sonnet
31https://deepmind.google/technologies/gemini/flash/
3https://extjs.org/

33https://astro.build/

34https://svelte.dev/

3Shttps://remix.run/

36https://vuejs.org/

3https://angular.dev/

38https://supabase.com/
3https://firebase.google.com/
“Onttps://www.netlify.com/

commit code to Git repositories, orchestrate cloud builds, and
provision SSL-secured live URLs. Bolt.new’s architecture sup-
ports rapid project sharing via URL snapshots, enhanced batch
instruction handling for complex workflows, and customizable
self-hosted agent deployments through its open-source MIT-
licensed codebase.

2) Lovable: Lovable introduces a groundbreaking dual-
mode platform that reimagines how web applications are
conceived, built, and deployed, merging the flexibility of con-
versational Al with the rigor of production-grade development.
Designed around two synergistic workflows—Edit Mode and
Chat Mode—Lovable empowers users to fluidly transition
between hands-on code generation and strategic planning
[155]. In Edit Mode, user prompts are translated directly into
live code updates, while Chat Mode acts as an intelligent
co-developer, supporting architecture refinement, debugging,
and iterative enhancement discussions without modifying the
active codebase until explicitly approved. At its core, Lovable
operates on a multi-model Al infrastructure, drawing strength
from OpenAI's GPT*!, Anthropic’s Claude for complex rea-
soning, Google’s Gemini for long-context tasks, Groq’s Llama
3 for high-speed generation, and Cohere’s Command R+*? for
scalable enterprise-level deployments. This ensemble enables
Lovable to offer unparalleled natural language understanding,
contextual recall, and coding precision. Frontend architectures
are predominantly scaffolded with React and styled using
Tailwind CSS, ensuring responsive, accessible, and Search En-
gine Optimization (SEO)-compliant designs. Backend services
are configured through Supabase, supporting robust relational
database operations, authentication workflows, real-time data
streaming, and role-based access controls. Lovable’s Knowl-
edge File feature sets it apart: a persistent memory structure
that maintains critical project information—including business
objectives, user personas, feature scopes, and design con-
straints—which the Al references dynamically during every in-
teraction. This reduces hallucinations and ensures consistency
across development cycles. Lovable integrates seamlessly with
GitHub for source control, Stripe for payments, Clerk for user
authentication, and Resend for transactional communications,
offering a truly full-stack experience within a unified browser
environment. Collaboration is central to Lovable’s vision. Its
real-time editing capabilities (currently in beta) allow multiple
users to contribute simultaneously, with live synchronization
ensuring transparency and parallel development. The platform
also embeds software engineering best practices, offering
CI/CD automation, visual diffs for Al-generated commits,
custom domain management, SSL provisioning, and branch-
ing workflows. Lovable further emphasizes effective prompt
design through its C.L.E.A.R. framework—Concise, Logical,
Explicit, Adaptive, Reflective—guiding users to maximize
output quality through precise communication.

3) vO by Vercel: vO by Vercel represents a major leap
forward in cloud-native development, fusing conversational Al
with modular application engineering to enable full-stack web
development entirely from within the browser [156]. Acting as

4Ihttps://openai.com/
“Zhttps://docs.cohere.com/v2/docs/command-r-plus

an intelligent continuous pair-programmer, v0 empowers users
to translate natural-language prompts into deployable React*?,
Next.js*, Svelte®>, Vue, Remix, Astro, and Qwik*® applica-
tions with remarkable speed and precision. Its architecture
revolves around the ”Block” abstraction—self-contained units
of code such as UI components, API routes, or configuration
files—that can be previewed in real time, edited interactively,
and integrated seamlessly into live projects via CLI tools like
shadcn/ui. The intelligence underpinning vO draws on an en-
semble of state-of-the-art models, including OpenAl’s GPT-4o,
Grog-optimized Llama 3 variants, xAl, Deep Infra, Perplexity,
Together Al, and Replicate. This diverse model foundation
enables v0 to excel not only in code generation but also
in backend orchestration, Ul prototyping, database schema
inference, and even diagram generation for architectural plan-
ning. Its extensive knowledge base spans frontend frameworks,
modern styling ecosystems, backend storage systems such
as Supabase, MongoDB*’, CockroachDB*®, EdgeDB*’, and
Turso®®, as well as CMS platforms like WordPress®!, Con-
tentful’?, Sanity>?, and Storyblok>. v0’s development flow
allows users to scaffold landing pages, SaaS dashboards, e-
commerce storefronts, and marketing sites through persis-
tent chat histories, proactive debugging recommendations,
and modular code expansions. Beyond basic code writing,
vO intelligently configures secure authentication flows (e.g.
NextAuth.jsSS, Clerk®, Auth057), sets up SEO metadata, op-
timizes responsive designs, and provisions A/B testing frame-
works via integrations like LaunchDarkly>® or Hypertune®.
It also automates the generation of backend API services
with frameworks such as Drizzle ORM and Supabase SDK,
delivering complete endpoint-to-database wiring with typesafe
guarantees. Deployment pipelines are deeply integrated with
Vercel’s edge infrastructure. A simple “Deploy” instruction
triggers environment configuration, global CDN distribution,
SSL provisioning, cache invalidation, and automatic rollbacks
in case of failures—all within the chat-driven workflow.
Enterprise-grade features such as audit logging, Role-Based
Access Control (RBAC) access controls, and SOC 2% Type II
compliance ensure operational security and regulatory align-
ment for professional teams. Table IV illustrates comparison
of browser-based tools e.g. Bolt.new, Lovable, v0, Replit and
Create.

Shittps://react.dev/
“htps://nextjs.org/
“hitps://svelte.dev/
“Ohttps://qwik.dev/
“Thttps://www.mongodb.com/
“Bhttps://www.cockroachlabs.com/
“https://www.edgedb.com/
SOhttps://turso.tech/
Shttps://wordpress.com/
S2https://www.contentful.com/
33https://www.sanity.io/
S*https://www.storyblok.com/
SShttps://next-auth.js.org/
SOhttps://clerk.com/
5Thttps://auth0.com/
S8https://launchdarkly.com/
Shttps://www.hypertune.com/
Ohttps://secureframe.com/hub/soc-2/what-is-soc-2

TABLE IV: Comparison of Browser-Based Tools (Bolt.new, Lovable, v0, Replit and Create)

Tool Templates Lang. (s) Interaction Mode Frameworks LLM / Al Storage & DB Unique Feature
Bolt.new Astro, Vite, Next.js, JS, TS Chat-based StackBlitz Claude Supabase, Full-stack
NativeScript, prompting (Build | WebContainers; 35 Sonnet | Firebase, environment control,
Nuxt.js, Slidev, Mode) and Non- full-stack (Anthropic) for | Netlify, Expo real Node.js server
Vue.js, Svelte, code Discussion environment Build Mode; execution inside
Remix, TypeScript, Mode with in-browser Gemini 2.0 Flash browser, batch
React, Remotion, real-time search supporting major | for Discussion prompts, project
Angular, Qwik grounding JS frameworks Mode sharing via URL,
open-source MIT
license
Lovable No fixed templates; JS, TS, Two distinct modes: Custom React- OpenAl (GPT Supabase, Knowledge File
dynamic project SQL Edit Mode for code | based front-end, models), GitHub, for persistent
scaffolding via generation, Chat | Tailwind CSS Anthropic Stripe, Resend, project memory,
natural language Mode for planning, styling, Supabase Claude, Google Clerk, Make, strategic Chat Mode
description debugging, and | backend integration Gemini, Groq Replicate, assistance, real-time
architectural (Llama 3), 21st.dev collaboration (beta),
guidance Cohere Command project Remix feature
R+ for clean resets
v0 (Ver- Next.js, React, JavaScript Generative chat React, Next.js, Composite Supabase, Converts natural
cel) Svelte, Vue, Nuxt, AdS), interface for Vue, Svelte, Nuxt, integration of Postgres, language into
Remix, Qwik, Type- code generation, Remix, Qwik, models: OpenAl, Vercel Blob, deployable full-stack
Astro, Solid, Preact, Script debugging, Ul Astro, Tailwind xAlL Groq (Llama Upstash, code blocks; instant
Angular, Hugo, (TS), prototyping, CSS, Material U, 3), Deep Infra, PlanetScale, preview inside chat;
Gatsby, Python, Python, architectural Chakra UI, CSS-in- Fal, Perplexity, Neon, deep Vercel platform
React Router HTML, planning JSX, Vanilla CSS, Together Al MongoDB, integration; real-time
CSS, Styled Components Replicate, Grafbase, Ul prototyping;
Mark- ElevenLabs Azure enterprise SOC 2
down MySQL, Type 2 compliance;
Azure native CMS and Auth
CosmosDB, integrations; AI SDK
Firebase, and multi-framework
Redis, support
Fauna, TiDB,
CockroachDB,
Tigris,
Couchbase,
Xata, Astra
DB, EdgeDB,
Convex, Turso,
Railway,
Liveblocks
Replit Python, JavaScript, | Python, Natural ~ language | React, Next.js, Vue, | Agent vl: Claude | Built-in Replit | Browser-native cloud
TypeScript, Node.js, JavaScript | driven Agent Svelte, Bootstrap, 3.5 Sonnet; Agent database IDE; natural language
HTML/CSS/IS, ds), (app creation), | Tailwind CSS, | v2: Claude 3.7 | (key-value), app generation
C++, Golang, Nix, Type- Assistant (feature Material-UlI, Sonnet; Assistant external (Agent v2); real-
plus starter app Script addition and | and direct API Basic: GPT- support for | time collaborative
templates (TS), explanation), real- integrations 4o; Assistant | Firebase, development; instant
Node.js, time collaborative Advanced: Google Sheets, deployment with
C++, Go, coding Claude 3.7 Airtable, custom domains;
HTML, Sonnet; supports Dropbox scalable reserved
CSS, Nix OpenAl, VMs; pre-configured
Anthropic, xAl, secure environment
Perplexity models with version
control, databases,
authentication, and
payments
Create Custom full-stack | HTML, Natural ~ language | Custom OpenAl GPT-40, | Integrated Visual real-time
apps, web pages, CSS, chat interface; lightweight; Anthropic Claude lightweight app building with
dashboards; starting | JavaScript | project-wide and | component-driven (Haiku, Sonnet, | database, user | chat-driven updates;
from blank pages Aas), element-specific model; integration Opus), Google accounts; live component
or built via Al in backend prompting; text + with libraries like Gemini, Groq, external API | editing; image-paste
natural language functions image inputs shaden/ui and Stable Diffusion, connections styling; multi-page,
generated external APIs GPT-4 Vision through function, and database
in JS Functions orchestration without

direct coding; direct
integration of Al
services like Stable
Diffusion, Google
Maps, Web Scraping,
PDF generation,
Charting, QR code
generation

4) Replit: Replit has transformed from its early identity
as a browser-based Read-Evaluate—Print Loop (REPL) into a
comprehensive Al-augmented cloud development ecosystem,
designed to lower barriers for software creation across all
skill levels [157]. Built atop containerized sandboxes or-
chestrated via Google Cloud infrastructure, Replit environ-
ments leverage Nix-based reproducibility, ensuring determin-
istic builds across diverse programming languages such as
Python, JavaScript, TypeScript, Node.js, C++, and Go. Each
”Repl” runs in an isolated VM-like environment, governed
by a replit.nix manifest that declaratively specifies language
runtimes, libraries, and development tools, providing consis-
tency across collaborative sessions. The user interface in-
tegrates a Monaco-powered editor enhanced with LSP and
Debug Adapter Protocol (DAP)®'®? support, delivering real-
time code intelligence, auto-completion, syntax validation,
debugging, and inline documentation. Collaborative coding
is natively supported through CRDT-backed synchronization
layers, enabling seamless real-time edits, synchronized console
output, and terminal sharing via Join Links—transforming
Replit into a true multiplayer development experience. At the
forefront of Replit’s innovation are its Al-driven services:
Ghostwriter and Agent. Ghostwriter serves as an Al pair
programmer offering intelligent code suggestions, refactorings,
and contextual explanations, powered by models like An-
thropic’s Claude Sonnet and OpenAl’s GPT-40. Meanwhile,
the Agent platform operates at a higher abstraction layer:
it interprets natural-language prompts such as “Create an e-
commerce storefront with Stripe checkout,” and automatically
scaffolds multi-file React frontends, Express APIs, serverless
functions, and secrets management configurations. Agent v2
further refines this process by iteratively hypothesizing so-
lutions, traversing codebases for self-repair, and maintaining
continuous project coherence akin to a junior developer. De-
ployment is fully abstracted within Replit. Applications are
automatically containerized, distributed via a global CDN,
assigned custom domains, and issued SSL certificates through
a single-click publishing flow. Reserved VM Deployments
offer guaranteed uptime (99.9%) and scalable resources, while
integrated key-value stores and managed Postgres instances
support persistent state management without external setup.
Beyond coding and deployment, Replit’s modularity extends
to seamless integration with services like Firebase, Airtable®?,
Google Sheets, Twilio®, and Stripe, while environment control
via .replit and replit.nix files enables granular dependency,
build, and execution configuration. Version control through
GitHub sync, secrets management, live app previews, and real-
time messaging between collaborators position Replit as a
holistic platform for production-grade development.

5) Create: Create represents a breakthrough in the land-
scape of Al-assisted software engineering by combining con-
versational language interfaces with multimodal input inter-
pretation to automate full-stack web application development.
Designed to abstract away traditional coding complexities,

6l https://www.graalvm.org/latest/tools/dap/
62https://microsoft.github.io/debug-adapter-protocol/
3 https://www.airtable.com/
https://www.twilio.com/en-us

Create allows users to describe their project goals—either
through text prompts or screenshots—and dynamically gener-
ates frontend, backend, and database layers in real time [158].
Its hybrid interaction model leverages both broad project-
level orchestration and fine-grained, element-specific editing,
enabling a seamless transition between rapid prototyping and
precise refinement. At its core, Create utilizes an ensemble
of state-of-the-art Al models, including OpenAl’s GPT-4o,
Anthropic’s Claude Sonnet and Opus, Google’s Gemini series,
and Groq’s accelerated inference models. Visual inputs are
processed through a multimodal pipeline that applies Optical
Character Recognition (OCR), semantic segmentation, and
style extraction to construct an intermediate AST. This AST
captures structural, stylistic, and behavioral intent, which the
system then synthesizes into modular HTML, CSS (often
Tailwind-based), and JavaScript code artifacts. Frontend gen-
eration supports frameworks such as React, Svelte, and Vue,
while backend operations are managed through a serverless
Function-as-a-Service) (FaaS) model. Create can instantiate
databases (i.e. SQL/NoSQL), generate API endpoints, secure
authentication layers, and manage environment variables, all
driven entirely by conversational inputs. It offers extensive
integration with external APIs like Google Maps, Resend
for transactional emails, Charting libraries, and cloud storage
providers, automating complex workflows without manual
boilerplate. The platform’s / command system further aug-
ments its speed, enabling users to insert Components, Func-
tions, Databases, or Authentication modules directly through
quick command-line-like interactions within the chat inter-
face. Deployment is orchestrated through a managed CI/CD
pipeline, bundling static assets, issuing SSL certificates, provi-
sioning CDN distribution, and facilitating domain routing—all
triggered via a single ‘“Publish” operation. Create’s dual-
mode prompting—supporting both project-wide and localized
element edits—ensures continuity across development stages,
backed by context-propagated prompt chaining that preserves
historical interactions. Its built-in prompt refinement guidance
encourages best practices, suggesting granular breakdowns for
complex tasks, precise style specifications using hex codes,
and explicit context-setting for bug fixes.

6) Trickle Al: Trickle Al redefines the paradigm of
browser-based, no-code application development by merging
multimodal input processing with agentic full-stack orches-
tration. Anchored in a vision-to-spec pipeline, Trickle Al
enables users to create production-grade websites and dy-
namic web applications using natural language prompts and
uploaded screenshots [159]. Its architecture seamlessly fuses
frontend technologies with backend intelligence driven by
Python, C++, and deep learning frameworks such as PyTorch
and TensorFlow. Central to its pipeline is a vision model
powered by GPT-40, capable of segmenting visual inputs into
structured Ul layouts and interpreting user intent from both
image features and text-based instructions. Upon receiving a
wireframe® or mockup®, Trickle AI’s semantic segmentation
service parses layout regions and performs OCR to extract

S https://wireframe.cc/
https://moqups.com/

embedded textual elements. These outputs are mapped to a
high-level UI schema, which guides the dynamic generation
of frontend components in React or vanilla JavaScript, styled
using modular Tailwind CSS variables. Trickle AI’s theming
engine applies standardized design systems, allowing users
to fluidly switch between aesthetic templates without rewrit-
ing markup or scripts. Beyond frontend synthesis, Trickle
Al integrates a schema-first backend provisioning system.
It auto-generates relational or NoSQL databases—depending
on inferred user data models—facilitating operations such as
form submission handling, user authentication, and content
management without requiring explicit configuration. API end-
points are scaffolded automatically to connect UI forms with
backend persistence layers, ensuring RESTful communication
patterns by default. Deployment pipelines are abstracted into
a one-click orchestration mechanism. Trickle Al automates
containerization, configures global CDNSs, provisions SSL cer-
tificates, and manages DNS entries to assign custom domains.
Real-time performance monitoring, visitor analytics, and role-
based collaboration dashboards are embedded within the plat-
form’s management console, enabling iterative improvements
post-deployment.

7) Tempo: Tempo reimagines full-stack application de-
livery by blending structured human expertise with Al-
accelerated workflows, creating a hybrid model it terms
“Agent+.” Designed to expedite the development of scalable,
production-grade React applications, Tempo’s process initiates
with a detailed “We Define” phase. In this stage, product goals,
user personas, architectural constraints, and feature specifica-
tions are rigorously captured using standardized templates, de-
sign system guidelines, and scoped questionnaires [160]. This
methodology ensures early alignment across all stakeholders,
establishing component hierarchies, API schemas, data mod-
els, and authentication requirements before any technical exe-
cution begins. Upon completion of the scoping phase, Tempo’s
design agents—specialized UI/UX practitioners—rapidly pro-
duce wireframes and pixel-perfect high-fidelity prototypes
within 24 to 72 hours using Figma. These assets are created
leveraging shared component libraries and consistent design
tokens for color palettes, typography, and spatial metrics.
Critically, Figma exports a structured JSON manifest of design
variables, which is programmatically ingested during code
generation, maintaining strict design-to-code fidelity. Follow-
ing design sign-off, Tempo’s engineering agents scaffold a
comprehensive React-based codebase. Depending on project
requirements, the tech stack may involve Vite®’ (i.e. for fast
local development), Next.js (i.e. for server-side rendering and
API endpoints), or Create React App (i.e. for lightweight
SPAs). Best practices such as TypeScript integration, ESLint
linting, Prettier formatting, and unit testing with Jest or React
Testing Library are applied by default. State management is
handled via Zustand for lightweight applications or Redux
Toolkit for complex state-driven systems. Backend services
are optionally configured using Supabase, Clerk for authenti-
cation, Firebase for real-time data synchronization, and Stripe
or Polar for billing and payment functionalities. Tempo’s

Thttps://vite.dev/

workflow is inherently collaborative: deliverables are submit-
ted through GitHub pull requests, enabling real-time client
feedback, iterative revisions, and traceable version control. A
visual drag-and-drop editor facilitates direct manipulation of
UI components, ensuring both designers and developers can
co-evolve the application architecture. Codebases are clean,
modular, and portable, allowing frictionless deployment to
Vercel, Netlify, or Kubernetes clusters.

8) Softgen: Softgen redefines Al-driven full-stack appli-
cation development by delivering a fully integrated, natural-
language-to-code platform that enables users to transition from
concept to deployment in record time. Upon receiving a
plain-language description—such as “Build a SaaS platform
with user authentication, a dashboard, and payment integra-
tion”—Softgen’s orchestration engine maps the requirements
into a production-grade architecture, automatically generating
both frontend and backend components [161]. This pipeline
not only reduces development overhead but also ensures
alignment with modern software engineering standards. On
the frontend, Softgen scaffolds a Next.js project composed
of modular React components organized within a robust
directory hierarchy (components/, pages/, styles/). Tailwind
CSS is used extensively for styling, augmented by shadc-
n/ui component primitives to ensure accessible, responsive,
and theme-consistent interfaces. Routing configurations are
automated via next.config.js, while performance optimizations
such as dynamic imports and static site generation (SSG) are
embedded by default. State management solutions, including
React Context or Zustand, are selected based on the project’s
complexity and data synchronization needs, while API com-
munication is streamlined using React Query or SWR for
caching and optimistic updates. The backend stack is provi-
sioned through Firebase services. Authentication workflows
(email/password, magic links, OAuth) are scaffolded using
Firebase Authentication, while Firestore or Realtime Database
instances are configured dynamically based on inferred data
schemas. Security rules are generated alongside the database
structure to enforce strict access control policies. Custom
business logic—such as webhook processing or scheduled
tasks—is implemented via TypeScript-based Firebase Cloud
Functions, providing RESTful or GraphQL endpoints where
needed. These serverless functions integrate seamlessly with
third-party services like Stripe for payment handling and
Resend for transactional email delivery. Softgen further ac-
celerates delivery by offering a real-time preview environment
hosted on Vercel®® or Firebase Hosting, allowing instant vali-
dation of application behavior. Iterative refinement is enabled
through a conversational interface where users can issue
natural-language instructions like “Add a dark mode toggle”
or “Optimize signup form validation,” triggering Al-generated
incremental code updates and GitHub pull requests. Table V
illustrates comparison of browser-based tools e.g. Trickle Al,
Tempo, Softgen, Lazy Al, and HeyBoss.

9) Lazy Al: Lazy Al revolutionizes the prototyping and
deployment of full-stack applications by offering a fully auto-
mated environment initiated entirely through natural language

%8https://vercel.com/

TABLE V: Comparison of Browser-Based Tools (Trickle Al, Tempo, Softgen, Lazy Al, and HeyBoss)

Tool Templates Lang. (s) Interaction Mode Frameworks LLM / Al Storage & DB Unique Feature
Trickle 50+ ready-to- | HTML, Natural ~ language | Built on top of | Powered by | Built-in Converts screenshots
Al use templates for CSS, instructions; Al frameworks GPT-40 and database for into structured
diverse use cases: e- JS (for screenshot-based (PyTorch, other AI models user data Ul with semantic
commerce, portfolio, frontend); inputs; no-code Al- TensorFlow); for screenshot and form understanding;
real estate, Al | Al driven web app and | frontend generation decoding, content submissions; instant hosting and
tools, landing pages, backend form generation using lightweight | generation, form integrated domain management;
calculators, event | powered componentized creation, and website data | integrated Al
registration, task | internally models dynamic site | management functionalities for
managers by Python behavior apps without extra
and C++ setup; seamless
switching between
different design/UX
themes
Tempo SaaS Templates JavaScript | Natural language React, Next.js, Vite, Al-assisted Supabase Full lifecycle: idea-
(Vite + Supabase Aas), project description Tailwind CSS project (database), to-scope-to-design-
+ Stripe/Polar, Vite Type- (scope definition) refinement, visual Convex (data | to-code process;
+ Clerk + Convex, Script — Agent-based code editing; synchroniza- editable visual code;
Next.js + Supabase (TS) design — Agent- agent+ system tion), Stripe | GitHub integration;
setups), React based code — (not explicitly (payment) ownership of 100%
components, UT kits Visual editing + stated, but integrations IP and code; design
code export involves LLMs system generation
for translation from Storybook;
of scope to direct VSCode export
design/code) for customization
Softgen Full-stack app tem- JavaScript | Natural language React, Next.js, Al-driven full- Firebase Al builds a complete,
plates, SaaS apps, Aas), conversation; vision | Tailwind CSS stack code (Realtime production-ready web
dashboards, landing Type- description — (frontend); generation and | DB, Cloud application based
pages, Ul designs us- Script Al auto-generates Firebase, Supabase refinement engine Storage), on plain English
ing Tailwind; Full (TS) roadmap — live (backend); (using LLMs Supabase instructions; GitHub
frontend and back- code preview and | customizable to implicitly for | (new option repository export with
end setup templates iteration add others natural language | for database | full IP ownership;
understanding management) rapid 20-30 minute
and code project bootstrapping;
generation) full SaaS-ready stack
out of the box;
custom third-party
service integration on
request
Lazy Al No-code bots, Python, Natural language Flask, FastAPI Claude 35 Native ~ SQL | Instant full-stack
internal tools, | JavaScript, | prompts; (backend); Vue | Sonnet, GPT- | databases with | launch (frontend,
Al dashboards, HTML, conversational (frontend); native 40, Gemini automatic backend, DB setup)
intelligent agents, CSS, Vue full-stack app SQL database; integration (auto- migrations, from a single prompt;
business process building; iterative integrations with switching for best Google Cloud | real-time database
automation, data prompt-based OpenAl, Claude, model per task); backups, management with
mining tools, Google refinement Gemini internal Lazy AI | database migrations and
Workspace apps builder engine management backups; one-
console click production
deployment; ability to
integrate third-party
APIs (social media,
payment gateways,
cloud storage) via
prompt without
manual APl key
wiring
HeyBoss Landing pages, (Not Plain English Internal proprietary Proprietary Built-in Fully autopilot we-
business sites, event | explicitly prompting — full system; GitHub in- HeyBoss Al hosting, b/app builder (design,
RSVPs, blogs, men- app/site generation tegration for exter- built-in third- database code, SEO, database,
portfolios, restaurant | tioned) — iterative chat- nal developer con- | party integrations management, hosting, maintenance)
sites, fan hubs, AI | — likely based revision tributions (OpenAl, etc.) third- from one prompt; un-
apps, dashboards, web handled internally | party API | limited real-time revi-
games, educational | tech stack integrations sions via chat; covers
apps (JavaScript, without extra | 3rd-party API billing
HTML, setup inside subscription
CSS);
internal
Al-
powered

engine

commands. Bypassing the conventional need for framework
installation, database setup, and manual deployment, Lazy Al
orchestrates the entire pipeline—from frontend and backend
generation to cloud hosting and persistence configuration—in
a single, cohesive flow. Upon receiving a high-level prompt
Lazy AI’s orchestration engine decomposes the intent into
modular subtasks and triggers specialized microservices to
provision the necessary architectural layers [162]. For frontend
generation, Lazy Al scaffolds a modern Single-Page Appli-
cation (SPA) using either React or Vue, with default styling
powered by Tailwind CSS. Project structures are systemati-
cally organized into src/components, src/views, and src/router
directories, with routing defined through router/index.js (Vue)
or analogous React configurations. Core UI elements—such
as charts, tables, and dynamic forms—are assembled us-
ing integrated libraries like ApexCharts, Chart.js, Vuetify,
or Chakra UI. State management is seamlessly embedded
through Redux Toolkit for React or Pinia for Vue, while form
validation logic leverages libraries like Yup or VeeValidate.
On the backend, Lazy AI configures robust Express.js or
NestJS servers, complete with RESTful or GraphQL APIs and
OpenAPI (Swagger)® documentation support. Authentication
flows are scaffolded automatically using Passport.js, with
secure OAuth2 or JWT-based mechanisms. Data modeling is
dynamic: prompts specifying entities result in auto-generated
Sequelize or TypeORM schemas, complete with migrations.
Databases are provisioned on cloud services such as AWS
RDS” for PostgreSQL’' or MongoDB Atlas, ensuring high
availability and automatic scaling under secure Virtual Private
Cloud (VPC) configurations. Lazy Al further automates in-
frastructure provisioning through Infrastructure-as-Code (IaC)
frameworks like Terraform and Pulumi, generating scripts
that define compute resources, load balancer rules, and se-
cure networking policies. CI/CD pipelines are initialized via
GitHub Actions, including build, test, and deploy workflows,
while Docker Compose or Kubernetes manifests manage con-
tainerized lifecycle events. Optional observability integrations
with Prometheus, Grafana, and New Relic provide real-time
monitoring and alerting for production environments. Finally,
Lazy AI deploys a production-ready application accessible
via a live URL, pre-configured for autoscaling and uptime
resilience. Users benefit from real-time logging dashboards
and performance metrics, allowing continuous iteration post-
deployment.

10) HeyBoss: HeyBoss redefines the paradigm of digital
product development by delivering an entirely autonomous
platform capable of transforming natural language descriptions
into fully deployed, production-grade websites and mobile web
applications. Positioned beyond the capabilities of traditional
no-code builders and Al copilots, HeyBoss operates as a true
autopilot system: from a single-sentence user input, it au-
tonomously orchestrates design generation, frontend and back-
end coding, third-party integration, database configuration,
hosting setup, SEO optimization, and live deployment—all

https://swagger.io/specification/
TOhttps://aws.amazon.com/rds/
Tl https://www.postgresql.org/

without requiring iterative engineering or manual intervention
[163]. Architecturally, HeyBoss leverages a dynamic com-
ponent registry mapped to semantic parsing models. Upon
receiving a user’s prompt—the system identifies keywords and
assembles modular React or Svelte components from a pre-
curated registry, ensuring responsiveness, accessibility (Web
Content Accessibility Guidelines (WCAG) 2.1 compliance’?),
and server-side rendering where necessary. Routing structures
are auto-generated in Next.js or SvelteKit frameworks, with
appropriate URL slugs, navigation elements, and metadata
injection for SEO and social sharing optimization. Backend
provisioning is equally automated: HeyBoss establishes scal-
able environments using Firebase, AWS Amplify, or similar
services, configuring authentication flows (email/password,
OAuth), data models (Firestore or DynamoDB schemas), and
APIs (RESTful or GraphQL via AWS AppSync or Firebase
Functions). It seamlessly integrates communication work-
flows—such as form submissions triggering email notifications
through SendGrid or Resend—and injects telemetry scripts
for real-time analytics via Google Analytics or Mixpanel’?.
A distinctive innovation is HeyBoss’s conversational revision
system. Users can request modifications—such as altering ty-
pography, adjusting layout responsiveness, or updating feature
sets—through natural language chats. HeyBoss automatically
patches the codebase, updates styling variables, and applies
changes in real time, maintaining an immutable version history
akin to Git, thus enabling effortless rollbacks if needed.

11) Creatr: Creatr exemplifies the next evolutionary step
in Al-assisted web application development by enabling users
to design, construct, and deploy production-grade applications
solely through natural language instructions [164]. Distinct
from conventional no-code platforms, Creatr operates atop
a robust technology stack comprising Next.js for frontend
architecture, Tailwind CSS for responsive Ul styling, and
Supabase for backend data management and authentication
services. The platform’s Al system, powered by OpenAl
models, intelligently interprets user prompts to construct com-
plete application blueprints, encompassing route definitions,
UI layouts, database schemas, and external integrations. At
the frontend, Creatr scaffolds Next.js applications utilizing the
App Router paradigm, with each page organized into modular
directories under the app/ hierarchy. Generated components
employ Tailwind utility classes alongside reusable patterns
drawn from the shadcn/ui design system, ensuring visual
consistency and responsiveness. Asset management is stream-
lined via Unsplash API integration and a native visual asset
editor, allowing dynamic replacement of images and media
without code modifications. For backend provisioning, Cre-
atr auto-configures Supabase projects, establishing relational
database schemas, Row Level Security (RLS) [165] policies,
and Edge Functions for serverless compute, all managed
through Al-generated SQL migration scripts and API handlers
in TypeScript or JavaScript. Export flexibility is a hallmark
feature of Creatr. Users can export their projects directly to
GitHub repositories via OAuth-secured API calls, download

Thttps://www.w3.0org/TR/WCAG21/
Thttps://mixpanel.com/

ZIP archives for offline development, or employ the dedicated
creatrx CLI tool for seamless local environment integration.
Full source code ownership is guaranteed, empowering devel-
opers to extend, audit, and commercialize their applications
without platform lock-in.

12) Rork: Rork represents a cutting-edge Al-driven plat-
form engineered to radically accelerate the creation of cross-
platform mobile applications through natural language prompt-
ing. Built on the robust foundation of React Native, Rork
translates user-described app concepts into fully functional
codebases compatible with both iOS and Android environ-
ments. Its core innovation lies in the intelligent decomposi-
tion of user prompts into structured application architectures,
covering user interfaces, navigation flows, state management,
native modules, and deployment configurations, all aligned
with modern mobile development best practices [166]. Upon
receiving a prompt—such as “Create a habit tracker with
daily notifications and progress visualization”—Rork’s parsing
engine systematically interprets functional requirements into
a curated assembly of React Native components. It selects
primitives like FlatList’* for data rendering, DateTimePicker’>
for scheduling interactions, and Victory Native’® for data-
driven charting. The resulting codebase follows a professional
directory architecture: screen components are placed within
src/screens, navigation stacks are configured in src/navigation,
reusable Ul elements reside under src/components, and Redux
Toolkit slices are scaffolded to manage application state across
features like user preferences, activity logs, and notification
schedules. Rork’s generated projects integrate seamlessly with
Expo Application Services (EAS)”’ and standard React Na-
tive CLI workflows, automating critical build steps including
app.json configuration, provisioning profile management, key-
store generation, and cloud-based IPA/APK compilation. For
continuous testing, Detox-powered end-to-end test suites are
established under e2e/, ensuring that key user journeys—habit
creation, daily logging, and statistical analysis—function re-
liably across real devices and emulators. Persistent storage
is supported through local SQLite databases via react-native-
sqlite-storage, while optional Firebase Realtime Database inte-
grations offer cloud synchronization capabilities. Background
synchronization tasks leverage native messaging modules,
such as @react-native-community/messaging, ensuring real-
time data consistency across devices. Styling adheres to utility-
first principles using Tailwind CSS-in-JS libraries like twrnc,
allowing responsive, scalable UI design directly within React
Native’s paradigms. Complementing its technical output, Rork
auto-generates a comprehensive README file documenting
project setup instructions, environment variable (i.e. .env) man-
agement, and debugging guidelines, streamlining developer
onboarding and operations. Although complex feature cus-
tomizations may occasionally necessitate manual refinements,
Rork’s pipeline—from natural language prompt to production-
ready mobile application—substantially reduces traditional
development timelines from several weeks to a matter of hours,

T4https://reactnative.dev/docs/flatlist
TShttps://xdsoft.net/jqplugins/datetimepicker/
7TShttps://commerce.nearform.com/open-source/victory-native/
"Thttps://expo.dev/eas

offering an exceptional platform for startups, agencies, and
individual innovators seeking rapid, scalable mobile solutions.

13) Firebase Studio: Firebase Studio marks Google’s next
evolution in cloud-first development environments, consolidat-
ing project creation, intelligent coding assistance, local emu-
lation, and production deployment into a cohesive, browser-
native IDE [167]. Built atop the Code OSS foundation and
deployed on Google Cloud virtual machines, Firebase Studio
offers a highly customizable workspace defined through Nix-
based configurations. Developers can import repositories from
GitHub, GitLab, or Bitbucket’8, or initiate projects through
a comprehensive template library supporting Next.js, React,
Angular, Vue, Android, Flutter’?, Go®’, and Python Flask®'.
These templates scaffold complete application structures, in-
cluding Firebase configurations (firebase.json, .firebaserc), se-
curity rules, and serverless backend functions. At the core of
Firebase Studio lies Gemini in Firebase—a multimodal Al
assistant deeply integrated across the environment. Gemini
provides real-time support for code generation, refactoring,
bug resolution, dependency management, Dockerfile creation,
unit-test authoring, and inline documentation enhancements.
Beyond conventional coding, Firebase Studio’s App Prototyp-
ing agent (i.e. Prototyper) enables users to transform natural
language descriptions, sketches, or images into deployable
full-stack applications, embedding authentication flows, data
models, and routing without manual intervention—ideal for
vibe coding and rapid prototyping. Tight integration with
the Firebase Local Emulator Suite ensures developers can
locally emulate services such as Authentication, Cloud Fire-
store, Cloud Functions, Cloud Storage, and Hosting. Logs,
error metrics, and performance profiles are surfaced natively
within the Studio interface, streamlining iterative debugging
and validation workflows. Deployment to Firebase Hosting
or Cloud Run is facilitated via one-click publishing, with
automated CI/CD configurations managed through Cloud
Build or GitHub Actions. Environment configurations remain
portable across teams, specified through Nix flakes or devcon-
tainer,json, ensuring consistency in system packages, runtime
environments, and IDE tooling.

14) Napkins.dev: Napkins.dev represents a significant ad-
vancement in the integration of computer vision, LLMs, and
automated code generation workflows. Designed to transform
static UI artifacts—such as wireframes, sketches, and design
mockups—into production-ready React applications styled
with Tailwind CSS, it orchestrates a highly structured semantic
and syntactic conversion pipeline [168]. Upon uploading a Ul
image, Napkins.dev leverages advanced multimodal inference
via Llama 4 Maverick®? and Llama 3 Scout®® models accessed
through Together.ai. Semantic segmentation identifies the core
layout regions including headers, footers, navigation elements,
and content blocks, while OCR routines extract embedded
textual elements with high precision. The architectural pipeline

"8 https://bitbucket.org/product

Thttps://flutter.dev/

80https://go.dev/

81 https://flask.palletsprojects.com/
82https://ai.meta.com/blog/llama-4-multimodal-intelligence/
83https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct

proceeds by constructing an AST that encapsulates both the
structural hierarchy and stylistic properties of the input design.
This AST serves as the intermediate representation from
which Napkins.dev synthesizes optimized .tsx (TypeScript
JSX) components, enriched with Tailwind CSS utility classes.
Special attention is given to responsive design principles;
generated layouts include adaptive behaviors with breakpoint-
specific prefixes (e.g. sm:, md:, lg:) to ensure seamless cross-
device rendering. Text regions are programmatically popu-
lated based on OCR outputs, and images are dynamically
referenced either through user-provided uploads or integration
with external repositories such as Unsplash. Developers are
offered extensive flexibility for local refinement: generated
applications can be cloned from GitHub, run within Sandpack-
powered environments supporting live module replacement,
and deployed using Next.js’s App Router architecture. Styling
consistency is maintained via a custom tailwind.config.js,
tuned automatically to reflect color palettes, typography scales,
and spatial configurations inferred during AST generation.
Operational transparency is a core tenet of Napkins.dev. It
incorporates Helicone to monitor LLM inference metrics and
token consumption, while Plausible analytics provide General
Data Protection Regulation (GDPR)-compliant insights into
user engagement. Fully open-sourced under the permissive
MIT license, the platform invites developers to inspect and ex-
tend its inference engines, prompt templates, and deployment
workflows. Table VI illustrates comparison of browser-based
tools e.g. Creatr, Rork, Firebase Studio, Napkins.dev, Devin
Al, and All Hands Al

15) Devin AI: Devin Al, developed by Cognition Labs,
represents a significant advancement in autonomous soft-
ware engineering by seamlessly integrating large language
model—driven code generation with an interactive development
environment [169]. As a self-sufficient “Al software devel-
oper,” Devin can ingest natural-language task descriptions,
autonomously spawn parallel sessions to execute discrete
engineering activities—such as refactoring modules, migrat-
ing JavaScript codebases to TypeScript, upgrading Angular
frameworks, converting monorepos to submodules, and excis-
ing stale feature flags—and then validate its own work by
running linting tools, static analyzers, and CI pipelines. Its
embedded VS Code-based IDE affords real-time visibility into
Devin’s actions: developers can observe live code edits, launch
terminal commands, or intercept interactive browser operations
when documentation lookups or multi-factor authentication
flows are required. Under the hood, Devin’s API exposes ses-
sion management endpoints, enabling programmatic orches-
tration of multiple “Devins” on fragmented to-do lists—each
bounded by an Active Compute Unit (ACU) quota to optimize
performance and reliability. While Devin excels at junior-
engineer—level tasks—targeted bug fixes, incremental feature
enhancements, unit-test generation, PR reviews, and customer
support workflows—it deliberately limits scope to clear, verifi-
able tasks to mitigate context drift and hallucinations. Design-
ers and product teams access Devin via a conversational chat
interface in their browser or Slack, tagging it on threads where
a concise description and success criteria trigger a new session.
Cognition Labs has baked in safeguards: session prompts

require explicit completion criteria, credential sharing must
flow through a secure Secrets Manager, and any large-scale ar-
chitectural overhaul is proactively broken into isolated micro-
sessions. As developers provide iterative feedback—approving
or “nudging” Devin back on track—the model continuously
refines its understanding, suggesting “Knowledge” artifacts to
streamline future tasks and automatically indexing repositories
to accelerate codebase Q&A.

16) All Hands Al: All Hands Al (branded “OpenHands”)
represents an ambitious open-source framework that trans-
forms traditional development workflows by deploying au-
tonomous Al agents within a sandboxed Docker runtime [170].
At its core, OpenHands orchestrates LLM-driven “software
developer” agents that can modify source code, execute shell
commands, navigate web documentation, and even invoke
APIs programmatically, all through a unified RESTful control
protocol. Users may deploy the platform locally via a hardened
Docker image—which isolates the action execution server
and enforces resource constraints—or leverage the hosted
OpenHands Cloud®* service with zero-trust GitHub/GitLab
integration and $50 of free credits. The frontend exposes a
rich browser interface comprising a conversational chat panel,
a filesystem workspace view, an embedded VS Code editor,
terminal and Jupyter panes, and a non-interactive browser for
autonomous navigation tasks. Under the hood, the system em-
ploys a three-tag Docker image versioning scheme (versioned,
lock, and source tags) to guarantee reproducible, incremental
image builds, while a plugin architecture allows teams to
extend the runtime client with domain-specific capabilities.
OpenHands is LLM-agnostic: users can ‘“choose their en-
gine” from Anthropic’s Claude 3.5 Sonnet, OpenAl endpoints,
HuggingFace models, or any OpenAl-compatible LLM, with
configuration via environment variables or a TOML config file.
Conversations and workspace state persist in local volumes
(/.openhands-state) or cloud storage, enabling context window
management and conversation resumption for up to 14 days.

B. IDEs, Code Editors

In the evolving landscape of vibe coding, modern IDEs
and code editors have transformed into intelligent, context-
sensitive environments that actively participate in the creative
and engineering process. These tools go beyond traditional
syntax assistance, embedding Al agents capable of under-
standing project structure, tracking developer intent, and co-
authoring code through conversational and event-driven inter-
action. Within this paradigm, editors like Windsurf, Cursor,
and Zed exemplify how Al-enhanced development platforms
enable a fluid, real-time partnership between human engineers
and machine collaborators—streamlining ideation, refactoring,
testing, and deployment as part of a seamless, vibe-aligned
workflow.

1) Windsurf Editor: Windsurf Editor by Codeium repre-
sents a paradigm shift in integrated development environ-
ments by deeply fusing human intent with state-of-the-art
Al reasoning. At its core lies Cascade, an Al “flow” engine
that continuously observes user edits and contextualizes them

84https://github.com/All-Hands-AI/OpenHands

20

TABLE VI: Comparison of Browser-Based Tools (Creatr, Rork, Firebase Studio, Napkins.dev, Devin Al, and All Hands AI)

Tool Templates Lang. (s) Interaction Mode Frameworks LLM / Al Storage & DB | Unique Feature
Creatr Modular Ul elements | JavaScript | Natural language Next.js (frontend), Internal Al Supabase Modular component
(popups, buttons, (Next.js + prompting — Tailwind CSS builder using | backend; asset | building, website
fields, carousels), Tailwind automated web (styling), Supabase OpenAl models management cloning, asset
website clones, CSS app/code generation (backend & auth) for enhanced with management, flexible
customizable landing stack), — visual editing feature generation | Unsplash/Al- exports (GitHub,
pages, dashboard HTM- generated ZIP, CLI), rapid
clones, MacOS L/CSS images; local | deployment with
clone, games exports; custom domains,
GitHub full source code
integration ownership
Rork Visual novel game, | JavaScript, | Natural language React Native Custom AI mod- Integrated Full mobile app
Airbnb-style app, Type- prompt — Full app (cross-platform), els for app gen- state creation from simple
Instagram-style Script generation Expo (device eration, integrated | management; prompts; real-time
app, Meditation (via testing) into "Vibe” envi- can be code generation and
timer, Habit tracker, React ronment extended preview with Vibe;
Calorie tracker, Native) with Firebase, deployable apps for
Todo list, Weather Supabase iOS and Android
dashboard, Fitness manually (not | simultaneously
tracker native)
Firebase Go, Java, .NET, JavaScript, | Natural language Next.js, React, Gemini in Firebase Full-stack Al
Studio Node.js, Python Type- prompting + Direct | Angular, Vue.js, Firebase Realtime app development
Flask, Next.js, Script, code editing (via | Node.js (Express), (Google’s Gemini | Database, via multimodal
React, Angular, | Python, Code OSS IDE) Flutter, Astro model integrated | Cloud prompting; dual
Vue js, Android, Go, Java, for coding, Firestore, mode (coding +
Flutter, React Native Dart prototyping, and | Cloud Storage, no-code prompting);
(Flutter), testing) Data Connect | deep integration with
C++, with GraphQL Firebase and Google
NET Cloud; customized
(C#) online IDE
Napkins. None specific; user- JavaScript | Upload image Next.js (App Llama 4 | Amazon S3 Screenshot-to-React
dev generated via wire- (Re- (wireframe/- Router), React.js, Maverick, Llama (for image app generation using
frame/image upload act.js), mockup) — Al Tailwind CSS 3 Scout (powered storage); state-of-the-art open-
Tailwind model converts into by Together.ai) Helicone (ob- source models, fully
CSS React + Tailwind servability); open-source project
code Plausible with local deploy
(website support
analytics)
Devin None specific; on- Python, Chat interface Next.js (React web Proprietary, Can provision, End-to-end
Al the-fly scaffolds tai- JavaScript, | backed by an apps), Modal (ML Cognition configure autonomous
lored by prompt Type- embedded VS model serving), Labs—developed and integrate | coding, multi-
Script, Code-style IDE Netlify (hosting/de- transformer arbitrary agent parallelism,
HTM- (editor + terminal), ployment) LLMs fine- databases self-learning from
L/CSS, an interactive tuned for code and storage | docs, real-time web
Shell in-browser web synthesis, back ends navigation, and
scripting navigator, and debugging, (SQL/NoSQL, persistent ~ memory
a built-in task planning and file stores) on | of organizational
planner; also multi-agent demand via | conventions.
accessible via a coordination prompt-driven
RESTful API setup and code
generation
All No built-in code or | Language- | Primarily browser- Docker-based Pluggable Local Docker | Open-source, MIT-
Hands project scaffolding agnostic based Ul (local sandbox runtime “Choose your | volumes licensed multi-agent
Al templates; users at the Docker or cloud), with customizable Engine” interface (/.openhands- development platform
define custom agent | agent with comple- | base images and a | supporting state) or | delivering top scores
workflows and | level, mentary CLI, | plugin architecture, | Anthropic cloud storage; | on SWE-bench and
prompts Python, headless/scriptable plus VS Code (Claude 3.5 no built-in LiveSWEBench,
JavaScrip- mode, and GitHub embedding in the Sonnet), OpenAl, database, with reproducible
t/Type- Action integrations frontend HuggingFace, relies on | three-tag Docker
Script, Together.ai, or | filesystem image versioning and
Go, Rust, any OpenAl- | mounting fine-grained plugin
Java compatible for data | support
endpoint. persistence

in real time, eliminating the need to redundantly re-supply
prior context [171]. Developers may toggle seamlessly be-
tween Write mode, where Cascade autonomously generates or
refactors code, and Chat mode, optimized for conversational
queries about architecture, algorithms, or debugging strategies.
Behind the scenes, Cascade orchestrates up to 25 discrete
tool calls per prompt—ranging from codebase semantic search
and analysis to web-scraping documentation and invoking
MCP-compliant servers—resuming interrupted trajectories on
demand. All changes are tracked in an immutable history,
enabling one-click reversion of any Al-driven modification.
Enterprise users benefit from robust identity management
through SAML-based Single Sign-On (e.g. Google, Azure
AD®, Okta®) alongside System for Cross-domain Identity
Management (SCIM)®7 APIs for granular provisioning of users
and groups, or even custom HTTP-based group synchroniza-
tion when external systems demand bespoke workflows. On
the formatting and quality side, automatic lint-error detection
and free-of-charge autocorrection are built in, while developers
may exclude sensitive or extraneous files via a .codeiumignore
specification. For deployment, Windsurf integrates App De-
ploys templates for popular JavaScript frameworks—Next.js,
React, Vue, Svelte—or static sites, and augments prompts with
image uploads for design mockups, currently supported by
GPT-40 and Claude 3.5 Sonnet. Underpinning all Al features
is a private, on-device RAG engine: a local indexing service
computes and queries vector embeddings across the entire
codebase without persisting code snippets to remote servers.
For larger organizations, a managed Remote Indexing Service
enables secure, single-tenant embedding and sharing of repos-
itories across teams. With customizable keybindings, ultralow-
latency autocomplete via the Tab engine, inline Command
invocations (Ctrl/Cmd + I), and contextual code lenses for
Explain, Refactor, and Docstring generation, Windsurf Editor
achieves a fluid, “magical” developer experience by marrying
rigorous enterprise security and modern Al workflows into a
single, high-performance IDE.

2) Cursor: Cursor is a next-generation, Al-centric code
editor built atop the familiar VS Code architecture, yet reimag-
ined to harness large language models and semantic retrieval
in every keystroke. At its foundation lies a custom “Tab”
engine—powered by purpose-built and frontier LLMs—that
continuously ingests repository embeddings to generate multi-
line diff suggestions rather than simple token completions
[172]. This vector-based context indexing allows Cursor to
anticipate and propose entire function bodies, boilerplate pat-
terns, or refactorings with a single Tab press, adapting to your
coding style over time. Its chat interface further elevates the
developer experience by embedding a lightweight Al pair-
programmer directly in the sidebar: in Ask mode, vibe coders
pose natural-language queries that leverage codebase-aware
search to locate definitions and explain algorithms; Man-
ual mode confines Al alterations to explicitly @-mentioned
files or symbols; and Agent mode autonomously orchestrates

8https://www.microsoft.com/en-in/security/business/identity-
access/microsoft-entra-id

86https://www.okta.com/

87https://scim.cloud/

21

complex, multi-step workflows—ranging from adding feature
scaffolds to optimizing API calls—while checkpointing each
change for safe rollback. Beyond code generation, Cursor
integrates a full suite of productivity tools: inline terminal
command synthesis via Ctrl K, automated lint-error detection
and free autocorrections, and seamless one-click application of
chat-suggested patches. To maintain enterprise-grade privacy,
Cursor operates in an SOC 2-certified Privacy Mode that
guarantees no code is stored remotely, and configuration
can opt into client-side vector storage exclusively. Context
augmentation extends to web and image inputs, enabling real-
time @Web searches for documentation retrieval and drag-
and-drop screenshots for design-guided implementations. The
editor preserves familiarity by importing existing VS Code
extensions, themes, keybindings, and LSP integrations in a
single click, yet its custom retrieval models replace crude file-
based context windows with precise semantic awareness.

3) Zed: Zed represents a radical rethinking of the modern
code editor, engineered from the ground up to deliver both
blistering performance and seamless human—Al collaboration.
At its core, Zed utilizes Rust and Electron’s native Ul bindings
to achieve sub-millisecond responsiveness, even when juggling
enormous multi-gigabyte workspaces. It employs Tree-sitter
for syntax highlighting and semantic parsing, providing in-
stant, structurally aware outline views, inlay hints, and code
actions without the performance penalties typical of LSP-only
solutions. Indeed, Zed’s Local Language Server integration
automatically downloads and updates the correct LSP binaries,
while its plugin architecture allows vibe coders to prioritize
or blacklist servers per language, ensuring deterministic di-
agnostics and completions [173]. Collaboration is elevated
through Zed’s innovative “Channels” feature, which leverages
WebRTC and LiveKit to enable real-time, multi-user editing
sessions. Unlike other editors that merely mirror keystrokes,
Zed shares contextual state—file trees, multibuffers, and cursor
positions—allowing pairs or entire teams to refactor large
codebases concurrently without merge conflicts. Ambient
awareness keeps participants apprised of each other’s focus,
and private voice or video links can be spawned directly
from the Command Palette (Ctrl-Shift-P), making mentoring,
pair-programming, and ad hoc design reviews frictionless.
For those who need more than local compute, Zed’s Remote
Development architecture decouples the UI from heavyweight
tasks: a headless Zed server runs on your cloud or on-premises
machine, handling file I/O, terminals, and language servers
over an encrypted SSH tunnel. This client-server model en-
sures that syntax trees and large-scale refactors operate at
native speeds, even when your code lives halfway across the
globe. To accelerate Al-driven workflows, Zed embeds an
Assistant Panel and an Inline Assistant that connect to popular
LLM providers via the Model Context Protocol. Vibe coders
can quote code selections, issue prompts, or invoke slash
commands to refactor, document, or debug—all within the
editor. Context Servers extend this further, allowing integration
with GitHub, Postgres, or Figma via MCP, so your Al models
have direct access to external data sources. Configurability
is paramount: Zed’s settings.json supports nested objects,
enabling per-language overrides for tab sizes, formatters, and

22

TABLE VII: Comparison of IDEs and Code Editor Tools (Windsurf Editor, Cursor, and Zed)

Category Windsurf Editor Cursor Zed

Supported JavaScript, TypeScript, HTML, CSS (App Deploys | Any language (excels with Python, JavaScript, Type- | All Languages: Ansible, AsciiDoc, Astro, Bash,

Languages frameworks) Script, Swift, C, Rust) Biome, C, C++, C#, Clojure, CSS, Dart, Deno,

Diff, Docker, Elixir, Elm, Emmet, Erlang, Fish,
GDScript, Gleam, GLSL, Go, Groovy, Haskell, Helm,
HTML, Java, JavaScript, Julia, JSON, Jsonnet, Kotlin,
Lua, Luau, Makefile, Markdown, Nim, OCaml, PHP,
Prisma, Proto, PureScript, Python, R, Rego, ReStruc-
turedText, Racket, Roc, Ruby, Rust, Scala, Scheme,
Shell, Svelte, Swift, Tailwind CSS, Terraform, TOML,
TypeScript, Uiua, Vue, XML, YAML, Yara, Yarn, Zig
AI / LLM In-
tegration e Models: GPT-40, GPT-4.1, 03-mini, 04-mini (medi- e Models: frontier & purpose-built mix (Claude 3.5, o Providers: Zed Al default, Anthropic, GitHub Copi-
um/high), Claude 3.5 Sonnet, Claude 3.7 Son- GPT-4 variants, xAI, Gemini...), auto-select or lot Chat, Google AI, Ollama, OpenAl, DeepSeek,
net (+Thinking), DeepSeek-V3-0324, DeepSeek- manual pick LM Studio; pluggable via MCP
R1, Gemini 2.0 Flash, Gemini 2.5 Pro, xAI Grok-3, o Surfacing: Tab (multi-line diffs), Chat pane (Ask/A- o Surfacing: Assistant panel (Ctrl-Alt-B), inline assis-
XAI Grok-3 mini (Thinking), Cascade Base gent/Manual/Custom), Cmd+K inline, terminal tant (Ctrl+Enter), multibuffer, REPL cells
o Surfacing: Cascade panel, Tab diffs, Command Cmd+K
(Ctrl/Cmd+I), Code Lenses, Smart Paste, AI Com-
mit

Interaction Cascade Write mode, Chat mode, inline Command, Agent mode, Ask mode, Manual mode, Custom modes Inline assistant (Ctrl+Enter), Assistant panel chats,

Modes Tab suggestions, Code Lenses, Problems—Cascade, (beta), Tab always-on, Chat tabs (Cmd+T/Ctrl+T), multibuffer edits, Jupyter-style REPL, Vim mode,
Smart Paste, Sounds for Cascade checkpoints, Quick Questions Channels collaboration

Framework App Deploys for Next.js, React, Vue, Svelte, Static VS Code extensions ecosystem; automatic TS/Python Framework-agnostic; remote headless server over SSH

Support HTML/CSS/JS; automatic npm/Vite detection & in- imports; terminal command generation; lint auto-fix & Dev Containers (beta); built-in Jupyter kernels; MCP
stall; Image Upload (GPT-4o, Claude 3.5) loops context servers

Remote Col- Real-time AI sync; SSO (SAML: Google, Azure AD, Relies on VS Code Live Share; no built-in SSH or | True multi-user Channels (pairing, mentoring, ambient

laboration Okta); SCIM (Azure, Okta, SCIM API); SSH to Linux remote; local only awareness); remote UI + headless server via SSH;
hosts; Dev Containers & WSL beta; Remote Indexing presence indicators
Service (Enterprise)

Storage Local RAG embeddings engine; Memories (auto) & Local indexing (up to 10,000 files); local chat history Local settings.json; locally saved conversations & con-
Rules (manual); .codeiumignore; SCIM group provi- & checkpoints; privacy mode (no remote storage) texts; opt-in telemetry logs; secure random telemetry
sioning IDs

Extensibility Windsurf Marketplace; full settings UI; .codeiu- VS Code extensions/themes/keybindings import; cus- Hierarchical settings.json; theme & syntax overrides;
mignore; MCP config (stdio, /sse); advanced Settings tom modes JSON; MCP support automatic LSP server download & updates; theme &
panel MCP extensions

Performance Real-time reasoning engine; context-aware autocom- Frontier-optimized LLMs; instant diff popups; multi- Sub-10 ms native keystroke/rendering; instant multi-
plete/chat; low-latency local indexing; intuitive web- line and instruction-based edits; prediction of next buffer sync; modal outline + outline panel; blazing
docs search cursor index queries

Security On-device embeddings; code & commit privacy; no Privacy Mode (no remote storage); SOC 2 certified; Opt-in telemetry; no training on user code unless
user-content training; SSO/SCIM enterprise controls local-only history & context opted-in; does not store sensitive code; audit logs via

telemetry log

Unique Sell- | Real-time bi-directional developer<»>Al “agentic” co- | Multi-line Tab diff suggestions + unified multi-mode | Sub-10 ms native performance with live multi-user

ing Point authoring powered by Cascade Al pair-programming Channels for human<> Al collaboration

experimental theme overrides. Telemetry is fully opt-in, with
separate toggles for diagnostics and metrics; data is proxied
through Zed’s servers to Axiom and Snowflake, then visual-
ized in Metabase dashboards, helping the Zed team optimize
stability and feature usage without ever exposing your source
code. In combining low-latency editing, robust LSP support,
advanced collaboration, and deep AI integration, Zed stands
at the forefront of next-generation developer tools. Table VII
illustrates comparison of IDEs and editors tools e.g. Windsurf
Editor, Cursor, and Zed.

4) Zencoder Al: Zencoder represents a significant evolution
in Al-assisted software development by embedding a context-
aware coding agent directly into popular integrated develop-
ment environments such as Visual Studio Code, JetBrains
IDEs®, and Android Studio [174]. At its core, Zencoder
employs a proprietary “Repo Grokking™” engine that con-
tinuously indexes an entire code repository, generating vec-
tor embeddings, mapping file dependencies, and performing
static analysis to identify naming conventions and architec-
tural patterns. This deep semantic graph underlies all of
Zencoder’s capabilities, enabling real-time code generation
and completion that seamlessly align with existing project
conventions. Beyond one-off suggestions, the Agentic Pipeline
orchestrates specialized Al agents—ranging from multi-file
coding agents to unit-test and code-review bots—through a

83 https://www.jetbrains.com/ides/

multi-stage workflow of analysis, validation, automated re-
pair, and iterative refinement. Each suggestion is subjected
to syntax checks, dependency verification, and repository-
specific quality gates before being surfaced, resulting in self-
healing code changes that integrate without manual patchwork.
Zencoder’s plug-and-play extensibility allows teams to craft
custom agents tailored to niche workflows, leveraging the
same validation infrastructure and codebase understanding.
Integration pathways span model-context-protocol endpoints
for CI/CD automation, deep hooks into ticketing and error-
tracking systems like Jira® and Sentry®®, and web-extension
capabilities for GitHub and GitLab, effectively collapsing
context switches. By supporting over seventy programming
languages and interoperating with major LLMs—including
OpenAI’s GPT series, Anthropic’s Claude Sonnet, Meta’s
Llama, or on-premise fine-tuned models—Zencoder offers
development teams unparalleled flexibility in selecting their
inference engines. Its enterprise-grade security and compliance
framework, complete with SSO/SAML support, audit trails,
and alignment with ISO 27001, GDPR, and SOC 2 standards,
ensures that sensitive code and intellectual property remain
protected throughout the Al-driven workflow.

5) Trae Al: Trae IDE reimagines the traditional develop-
ment environment by embedding an Al-driven collaborator

8 https://www.atlassian.com/software/jira
9Ohttps://sentry.io/

directly into the coding workflow, enabling seamless hu-
man—machine synergy without context switching [175]. This
“local-first” platform installs as a standalone application on
Windows or macOS, then indexes the project source tree to
build a lightweight vector map of all files and symbols; that
index powers both real-time autocompletion and a persistent
side-pane chat interface. Developers can invoke Al Q&A at
any point—through a side-chat panel or inline prompts—to ask
for explanations, generate code snippets, or diagnose errors,
and those queries automatically leverage project-specific con-
text drawn from open files, folders, or the entire workspace.
Under the hood, Trae offers built-in “Builder” and custom
agents: each agent encapsulates a persona, toolset (includ-
ing file I/O, terminal commands, web search, or external
MCP servers), and multi-step planning logic, so complex
tasks—from scaffolding a new microservice to refactoring
cross-module dependencies—can be decomposed, executed,
validated, and summarized without leaving the IDE. Model
management is equally flexible: users may toggle among in-
dustry—standard LLMs (GPT-40, Claude 3.7 Sonnet, DeepSeek
R1, Doubao 1.5-pro) and register additional providers via
API keys, tailoring inference to latency, cost, or licensing
constraints.

6) Cody: Cody is an enterprise-grade Al assistant designed
to transform how development teams interact with complex
codebases by embedding artificial intelligence directly into
familiar workflows. Built on Sourcegraph’s high-performance
Search API, Cody indexes repositories—both local and re-
mote—to extract semantic metadata, symbol references, and
dependency graphs, enabling context-rich code generation,
refactoring, and debugging. Rather than operating as a stan-
dalone tool, Cody integrates seamlessly into a broad spectrum
of IDEs (including VS Code, JetBrains editors, Visual Studio,
Eclipse, and more) as well as command-line and web inter-
faces, ensuring that teams need not abandon their established
environments to leverage generative capabilities [176]. Devel-
opers initiate conversations through a unified Al chat panel,
issue inline edit commands, or invoke advanced autocomplete
suggestions that span single-line inserts to multi-line code
scaffolding, all informed by the entire repository’s structure
and shared prompt libraries. By supporting multiple cutting-
edge LLMs—such as OpenAI’s GPT-4 family, Anthropic’s
Claude models, Google’s Gemini, and third-party offerings
like DeepSeek-Coder—Cody allows organizations to optimize
for latency, cost, or accuracy without compromising data
privacy; no customer code is ever used to train public models,
and enterprise deployments enforce strict data isolation, audit
logging, and zero-retention policies. Unique to Cody’s team-
focused design is its ability to share custom prompts and
context filters across an organization, driving consistency in
coding standards, security guidelines, and best practices at
scale. Experimental features like “auto-edit,” which dynam-
ically models a developer’s coding history to propose highly
tailored completions, and “agentic chat,” where specialized
agents autonomously gather and refine context to address
multi-step tasks, further extend productivity beyond manual
prompting. In regulated environments, Cody’s fine-grained ac-
cess controls, SSO/SAML integration, and detailed telemetry

23

provide compliance and governance assurances. Table VIII
presents comparison of IDEs and editors tools e.g. Zencoder
Al, Trae Al, and Cody.

C. Plugins and Extensions

In vibe coding, plugins and extensions elevate standard
IDEs into intelligent, context-aware environments. They em-
bed agentic workflows, enable seamless LLM interactions, and
automate tasks like refactoring, testing, and deployment—all
within the editor. Tools like Cline, Roo Code, and Avante.nvim
transform the development process into a fluid, Al-augmented
collaboration, driving efficiency and precision at every step.

1) Cline: Cline is an open-source, agentic Al extension
for Visual Studio Code that transforms the traditional auto-
complete experience into a fully autonomous coding partner.
Leveraging the advanced reasoning and context-management
capabilities of Claude 3.7 Sonnet (and other configurable
models via OpenRouter, OpenAl, Anthropic, Google Gemini,
AWS Bedrock, Azure, GCP Vertex, or local runtimes like
Ollama/LM Studio), Cline begins by parsing your project’s
file hierarchy and AST, then dynamically curates relevant code
snippets and assets into its working context. With your explicit
approval through a human-in-the-loop GUI, it can generate
or modify files—presenting diff views and automatically rec-
onciling linter and compiler errors—spawn shell processes to
install dependencies or run tests, and even orchestrate headless
browser sessions for end-to-end validation by interacting with
DOM elements and capturing console logs. Every change
is checkpointed in VS Code’s Timeline, enabling snap-and-
restore workflows that safeguard experimental edits [177].
Its MCP support further extends Cline’s toolkit, allowing
developers to “add a tool” on demand—whether that’s fetching
Jira tickets, scaling AWS EC2°! instances, or integrating
PagerDuty alerts—by auto-generating and registering new
MCP servers. Context inputs are richly varied: vibe coders
can feed Cline file contents, problem-panel diagnostics, URL-
fetched documentation, or entire directories at once, and it will
judiciously manage token usage to avoid context overload. A
built-in cost tracker reports per-request and aggregate token
consumption in real time, making budget management trans-
parent. Advanced shell integration introduced in VS Code 1.93
empowers Cline to monitor live terminal output and “proceed
while running” for long-lived processes.

2) Roo Code: Roo Code transforms Visual Studio Code
into a fully autonomous Al-driven development environment
by embedding a suite of specialized agents that deeply under-
stand your entire codebase and adapt to diverse engineering
workflows [178]. Unlike traditional autocomplete tools, Roo
Code leverages a multi-modal agent architecture—comprising
dedicated modes for general-purpose coding, architectural
planning, in-depth debugging, orchestrating complex task se-
quences, and freeform Q&A—to decompose high-level re-
quests into precise implementation steps. By analyzing project-
wide AST, dependency graphs, and git diffs, it preserves
syntactic integrity across multi-file refactors, presenting each

91https://aws.amazon.com/ec2/

24

TABLE VIII: Comparison of IDEs and Code Editor Tools (Zencoder Al, Trae Al, and Cody)

Category Zencoder Al Trae Al Cody

Supported 70+ languages: Python, Java, JavaScript/TypeScript, 100+ languages: Python, JavaScript, TypeScript, Go, | Broad: JavaScript/TypeScript, Python, Java, C/C++,

Languages C#, C++, Go, Kotlin C++, Java, Kotlin, Rust, C C#, Go, Ruby, PHP, Swift, Kotlin, Rust, plus Scala,

R, MATLAB, Lua, Julia, COBOL, Bash, PowerShell
Al / LLM In-
tegration e Models: OpenAl GPT-4/3.5, Claude 3.5 Sonnet, e Models: GPT-40, Claude 3.7 Sonnet, DeepSeek R1, e Models: GPT-4 Turbo/4o/40-mini, Claude 3.5/3.7,
Meta Llama 3.1, custom LLMs Doubao-1.5-pro, APIs like OpenRouter, Anthropic, Gemini 1.5/2.0, DeepSeek-Coder-V2, StarCoder
o Surfacing: Chat panels, inline completions, multi- DeepSeek o Surfacing: Deep Sourcegraph Search API, inline
file “Agentic Chat”, MCP for automation o Surfacing: Side-chat, inline prompts, @ Agent calls, chats, suggestions, whole-repo awareness
interactive “Builder” workspace

Interaction VS Code, JetBrains, Android Studio plugins; Coffee Side-chat, inline prompts, multimodal input, @Agent Chat, autocomplete, inline code edits, external artifacts

Modes Mode, chat, MCP CLI endpoint invocation (@file, @symbol), prompt libraries

Framework Frameworks like React, Angular, Spring, Django; Repo MCP-driven orchestration across CI/CD, APIs, DBs Framework-agnostic; language servers and dependency

Support Grokking™ engine manifests guide suggestions

Remote Col- SSO/SAML team syncing, Jira, GitHub/GitLab, Sentry MCP server deployment enables shared models/agents, Shared prompts, centralized Sourcegraph context sync

laboration integrations regional hosting for collaboration

Storage Local cache or enterprise Repo Grokking datastore Local-first storage; secure regional temp uploads for | Self-hosted or cloud Sourcegraph deployment; zero

embeddings prompt retention

Extensibility Custom Agents SDK on Agentic Pipeline, MCP inte- Custom agent builder, multi-step workflows, person- Magic prompts, private MCP connectors, batch scripts
gration a/rule definitions via Sourcegraph plugins

Performance Real-time repo completions; parallel syntax-semantic- Incremental embedding + parallel indexing for sub- Sharded Sourcegraph Search API for scalable, low-
integration checks second recall latency access to mono-repos

Security Enterprise-grade (ISO 27001, GDPR, SOC2); static Encrypted access; restricted commands; minimal re- Full encryption, SSO/SAML, organizational allowlists
analysis blocking at validation mote data persistence for LLM calls

Unique Sell- Combines Repo Grokking with self-healing Agentic Fully local-first, customizable multi-agent coding with Unified whole-repo Al; Sourcegraph-powered scalable

ing Point Pipelines for multi-file contextual generation MCP extensibility Al coding across large codebases

suggested change as a unified diff that can be reviewed, modi-
fied, or rolled back before integration. Its command-execution
engine interfaces directly with the VS Code integrated ter-
minal, enabling package installation, CI/CD invocations, and
bespoke shell scripts under user supervision; simultaneous
browser automation further supports end-to-end testing by
programmatically interacting with headless or full-browser
sessions to capture screenshots, Document Object Model
(DOM) logs, and UI anomalies. Roo Code’s extensibility is
underpinned by the MCP, which allows seamless integration of
custom microservices—ranging from database schema intro-
spection to cloud infrastructure management—thereby turning
external APIs into first-class tools that the Al agent can invoke
autonomously. Users retain granular control through custom
instruction profiles, auto-approval toggles, and operational
policies that govern tool execution and data privacy, ensuring
enterprise compliance and on-premises confidentiality. Model-
agnostic by design, the extension accommodates open-source
LLM runtimes (e.g. Ollama®?, Mistral®®, local TPU clusters)
alongside commercial endpoints (e.g. Anthropic, OpenAl,
AWS Bedrock®, Google Gemini), with live token accounting
and cost analytics surfacing consumption metrics in real time.
Localization features and text-to-speech capabilities extend
accessibility across fourteen languages, while a telemetry opt-
out mechanism respects organizational data governance.

3) avante.nvim: Avante.nvim reimagines the Neovim edit-
ing experience by integrating state-of-the-art large language
models into a workflow reminiscent of a full-featured Al IDE,
offering contextual code insights and one-click diff-based edits
without leaving the terminal. At its core, Avante leverages an
LLM provider interface—initially optimized for Claude and
OpenAl variants, with plug-and-play support for Ollama, Ai-
HubMix, and user-defined engines—to parse buffer contents,
infer intent from AST and comments, and formulate code

9https://ollama.com/
9https://mistral.ai/
94https://aws.amazon.com/bedrock/

transformations that preserve syntactic validity across files
[179]. Installation is streamlined via popular plugin managers
such as lazy.nvim, vim-plug, and Packer, or through sourcing
a precompiled binary fetched over curl and tar, with optional
Cargo builds for bleeding-edge development. Once configured,
users supply API credentials via environment variables, after
which Avante prompts for authentication upon launch and
caches provider selections in its sidebar state. Interaction
hinges on concise Ex commands—:AvanteAsk to solicit code
reviews, :AvanteEdit for targeted refactoring, and :AvanteChat
to spawn persistent conversational threads—each streaming
model outputs into a floating window and marking candi-
date edits as discrete codeblocks. Keyboard mappings under
a ileader;a prefix grant rapid access to history navigation,
model switching, and conflict resolution commands like co/ct,
while Neotree integration enables drag-and-drop file inclusion
into the context pipeline. Advanced users can enable cursor
planning mode—a hybrid of Aider’s planning prompts and
Cursor’s apply-once methodology—to decompose multi-step
edits into modular actions, and can extend functionality via a
built-in RAG service that, when containerized under DocKer,
performs vector retrieval against local document mounts for
RAG. Web search toolchains spanning Tavily, SerpApi, Kagi,
and Brave Search are configurable through a unified Con-
fig.web_search_engine.provider setting, allowing Al queries
to supplement in-editor analysis. Developers may also author
custom tool definitions to execute shell commands or in-
voke external APIs via MCP servers, effectively transforming
Avante into an orchestrator for CI/CD pipelines, database
migrations, or cloud provisioning.

4) backnotprop/prompt-tower: Prompt Tower transforms
the laborious process of gathering and formatting source code
context into a streamlined, token-efficient workflow by embed-
ding a dedicated user interface directly within Visual Studio
Code [180]. At its foundation, this extension leverages the VS
Code Tree View API to render a hierarchical, checkbox-driven
representation of workspace files and directories, automatically
respecting .gitignore, .towerignore, and user-defined ignore

patterns to prune out irrelevant artifacts. Once users elect spe-
cific files or folder nodes, Prompt Tower’s UI panel—deployed
as a separate editor tab—dynamically calculates the esti-
mated token count via its real-time analyzer, ensuring that
LLM context windows are neither under- nor over-saturated.
Through a highly flexible promptTower.outputFormat config-
uration, developers can prescribe bespoke blockTemplate and
wrapperFormat strings using placeholders such as fileCon-
tent, rawFilePath, fileNameWithExtension, and projectTree,
allowing seamless interchange between XML-like payloads,
Markdown code fences, or any arbitrary markup required by
downstream coding agents like Cursor, Windsurf, or Google
IDX. The interstitial blockSeparator setting injects custom
delimiters between file chunks, while the projectTreeFormat
object governs the inclusion, granularity, and styling of an
optional directory overview, complete with file-size annota-
tions. Prompt Tower’s live preview pane flags “invalidated”
contexts whenever selections or formatting rules are altered,
prompting a simple “Create Context” action to refresh the out-
put. To guard against performance regressions, the extension
warns users when individual files exceed a configurable size
threshold (promptTower.maxFileSizeWarningKB), preventing
inadvertent submission of megabyte-scale sources to LLM
endpoints. All core commands—ranging from “Copy Con-
text to Clipboard” to “Toggle All Files”—are exposed via
the Command Palette, enabling keyboard-centric operation or
mouse-driven exploration as desired.

5) Augment Code: Augment Code represents a paradigm
shift in developer tooling by embedding a capability-driven Al
agent directly into the most popular IDEs and communication
platforms, enabling software teams to navigate sprawling
codebases with unprecedented efficiency. At its core, Augment
leverages a sophisticated Context Engine that continuously
indexes the user’s workspace—respecting .gitignore and .aug-
mentignore configurations—to construct a dynamic, retrieval-
augmented memory of source files, version histories, and
dependency graphs [181]. This indexed corpus is then made
accessible to three principal interfaces: Chat, Next Edit, and
Code Completions. The Chat interface functions as an in-
IDE natural language assistant, synthesizing relevant code
snippets, API documentation, and architectural intent into co-
herent responses that accelerate onboarding and troubleshoot-
ing. Behind the scenes, Augment’s MCP integration extends
this conversational power by interfacing with external data
sources—ranging from SQL or NoSQL databases to CI/CD
pipelines, Slack workspaces, or bespoke REST endpoints—via
user-configurable MCP servers, allowing the Al to both re-
trieve live metrics and invoke actions such as running test
suites or deploying feature branches. For granular code evo-
Iution, Next Edit sequences user instructions into incremental
transformation steps, visualizing diffs and guiding develop-
ers through refactors, boilerplate generation, or algorithmic
optimizations while persistently validating syntax and type
constraints. Complementing this, the Code Completions fea-
ture embeds deep-learning—powered inline suggestions directly
in the editor, offering contextually aware autocompletions,
function signatures, and even multi-line code blocks that
adapt to the project’s existing coding standards and patterns.

25

Crucially, Augment’s Agent mode unifies these capabilities
into an end-to-end automation pipeline: upon receiving a
high-level request—the Agent decomposes the task into a
plan, performs preparatory analyses, solicits user confirmation
for potentially destructive operations, and executes terminal
commands or file modifications in sequence, all while stream-
ing real-time telemetry back to the developer. This design
ensures that powerful operations, such as mass dependency
migrations or bulk security patching, can be orchestrated with
both machine precision and human oversight. Deployment of
Augment is straightforward, requiring only installation from
respective extension marketplaces (VS Code Marketplace®,
JetBrains Plugin Repository®®, or via NPM for the Vim/-
Neovim plugin®?) and authentication against Augment’s secure
cloud service. Once authenticated, developers enjoy cross-
IDE parity, a uniform API for MCP server configuration
through either a GUI settings panel or direct JSON editing, and
seamless Slack integration via the @Augment bot—enabling
asynchronous, codebase-aware dialogues within team channels
without exposing proprietary repository contents.

6) continuedev/continue: Continue.dev introduces a modu-
lar, open-source framework for embedding bespoke Al assis-
tants directly into popular development environments, empow-
ering engineers to tailor large language model workflows to
their unique codebases and team conventions. At its founda-
tion, Continue supplies extensions for VS Code and JetBrains
IDEs that register four core interaction modalities—Chat, Au-
tocomplete, Edit, and Agent—each backed by a configurable
retrieval layer of context providers. Developers initiate a Chat
session in the sidebar to pose natural-language queries against
selected code fragments, entire open files, specific folders,
or even Git diffs, with Continue dynamically assembling
a prompt that respects ignore lists and ecosystem settings
[182]. Inline Autocomplete leverages this same contextual
awareness to offer multi-line suggestions, function signatures,
and semantic corrections as code is authored, while the Edit
mode allows in-place transformation of highlighted snippets,
applying AST-aware refactors and pattern-based rewrites with-
out leaving the editor. The Agent mode extends these capabil-
ities into full-scale automation: upon receiving a high-level
instruction, Continue decomposes the request into discrete
steps—analyzing dependency graphs, synthesizing implemen-
tation plans, and orchestrating sequential file edits or shell
commands—presenting users with inline “Apply,” “Insert,” or
“Copy” actions for each generated code block. All LLM inter-
actions stream incrementally, mirroring evented APIs, so users
can monitor generation progress and intervene mid-stream if
adjustments are needed. Continue’s MCP integration further
broadens its reach by enabling plug-and-play connections to
external services—such as CI/CD systems, database schemas,
or messaging platforms—through user-defined MCP servers,
thereby furnishing assistants with real-time telemetry and the
ability to execute cross-system workflows.

9https://marketplace. visualstudio.com/
9https://plugins.jetbrains.com/
97https://neovim.io/

7) GitHub Copilot: GitHub Copilot represents a paradigm
shift in developer tooling by embedding advanced generative
Al directly into the software development lifecycle. Operating
as an extension for Visual Studio Code (and accessible via
CLI and mobile clients), Copilot leverages large language
models—ranging from OpenAl’s GPT-4.1 and GPT-40 to
DeepSeek, Llama, and Microsoft’s Phi series—to analyze
the active code context and propose relevant code snippets,
function bodies, or documentation in real time. Its inline
completion engine functions as an intelligent pair program-
mer, employing the editor’s syntax tree and lexical tokens
to generate multi-line completions, refactor suggestions, and
standardized coding patterns that adhere to the project’s style
conventions [183]. Beyond basic autocompletion, Copilot Chat
surfaces an interactive conversational interface within the
IDE, allowing developers to pose natural-language queries
about code behavior, request explanations of algorithms, or
troubleshoot errors without leaving the codebase context. The
recent introduction of Agent mode extends this capability by
orchestrating complex, multi-file transformations: when given
a high-level instruction—such as “refactor the authentication
module” or “migrate from callbacks to async/await”—Copilot
Agent constructs a plan, executes sequential edits, runs test
suites, and validates outputs, all while streaming progress and
enabling human oversight at each step. Its “Next Edit” feature
visualizes the downstream impact of a proposed change across
the repository’s dependency graph, ensuring consistency in
variable renaming, type annotations, or API upgrades. Table
IX elaborates comparison of plugin and extension tools.

D. Command-Line Tools

In the context of vibe coding, command-line tools empower
developers with agentic, LLM-driven capabilities directly from
the terminal—merging the speed of the shell with the intel-
ligence of Al These tools like Claude Code, Aider, Goose,
and MyCoder.ai extend traditional CLI workflows into fully
autonomous, context-aware coding environments. Whether for
multi-file edits, Git operations, test orchestration, or secure
prompt generation, these CLI agents streamline end-to-end
development tasks with natural language, all while respecting
developer control, privacy, and configuration fidelity.

1) Claude Code: Claude Code transforms the developer’s
terminal into an intelligent coding companion by embedding
an agent that comprehensively ingests your entire codebase
and performs sophisticated operations purely through natural-
language prompts. Built on Node.js 18+ and distributed via
npm, it installs globally as @anthropic-ai/claude-code and
launches with a simple claude command, initiating an OAuth
handshake with Anthropic’s API. Under the hood, Claude
Code employs the claude-3-7-sonnet-20250219 model by de-
fault (with fallback to claude-3-5-haiku for smaller tasks), but
can be reconfigured via environment variables or global set-
tings to leverage Amazon Bedrock, Google Vertex Al, or other
LLM providers. Once authenticated, it dynamically crawls
your project’s file tree and dependency graph—no manual
context loading required—allowing vibe coders to ask detailed
questions about architecture, pinpoint logic, or request on-
the-fly refactors and bug fixes. Beyond code comprehension,

26

Claude Code orchestrates testing and linting pipelines, auto-
matically executing failing test suites and supplying corrective
patches, while its Git integration facilitates searching commit
history, resolving merge conflicts, rebasing, and generating
semantic commit messages or pull requests. For advanced
planning, vibe coders can invoke “extended thinking” modes
to generate multi-step architectural proposals, and persistent
memories stored in CLAUDE.md ensure stylistic and domain
conventions are retained across sessions. Security is baked into
its architecture: all network traffic flows directly to Anthropic’s
API without intermediaries; privileged operations require ex-
plicit runtime approval; prompt-injection is mitigated by input
sanitization and command blocklists; and integration with con-
tainerized dev-containers can enforce default-deny firewalls. In
CI or headless environments, a non-interactive mode (claude
-p) lets vibe coders script documentation updates or release
tasks with pre-approved allowedTools, while slash commands
and a rich CLI configuration system empower customization
of themes, memory, and tool allowances.

2) Aider: Aider reimagines the traditional pair-
programming experience by embedding a conversational Al
directly into your terminal, enabling seamless collaboration
with large language models to both scaffold new projects
and enhance existing codebases [185]. Installed via a
simple python -m pip install aider-install invocation, Aider
constructs a comprehensive dependency graph of your
repository—regardless of size—so that context for any
refactoring, feature addition, or bug resolution is immediately
available without manual file selection. It accommodates
over a hundred programming languages—from Python and
JavaScript to Rust, Go, and C++—and integrates tightly with
Git so that every transformation is committed with descriptive
messages, while developers retain full ability to diff,
review, and revert Al-generated changes. Unlike static code
generators, Aider supports both cloud-hosted and on-premise
LLM backends—favoring Claude 3.7 Sonnet, DeepSeek R1,
Chat V3, OpenAl’s 03-mini and GPT-40, as well as Gemini,
GROQ, LM Studio, xAl, Azure, Cohere, Ollama, OpenRouter,
Vertex Al, and Amazon Bedrock—witchcraft its ability to
switch providers through CLI flags and environment-variable
API keys. Its flexible configuration system reads from YAML
files, .env entries, or dedicated config modules, enabling fine-
grained control over model selection, prompt caching for cost
efficiency, custom prompt templates, and editor integration.
Developers can annotate code with inline comments in their
IDE of choice—VS Code, Vim, JetBrains editors—and Aider
will detect those cues to generate or modify code.

3) codename goose: Goose is an open-source, on-machine
Al agent designed to bring the power of large language models
directly into your local development environment, eliminating
reliance on external intermediary services. Distributed as both
a command-line interface and a desktop application, Goose
can be installed on macOS, Linux, or Windows via WSL, and
supports ARM and x86 architectures alike. Upon first execu-
tion, it prompts the user to select an LLM provider—ranging
from Anthropic’s Claude and OpenAl endpoints to Amazon
Bedrock, Azure OpenAl, Databricks, Google Vertex Al, Groq,
Ollama, and OpenRouter—by supplying the appropriate API

TABLE IX: Comparison of Plugin and Extension Tools

27

Category Cline Roo Code avante.nvim Prompt Tower Augment Code Continue GitHub Copilot
IDEs / VS Code VS Code Neovim VS Code VS Code, JetBrains, VS Code, JetBrains VS Code, CLI, Mo-
Platforms Vim/Neovim, Slack bile
Supported | Claude 3.7/3.5, | Anthropic, OpenAl, | Claude, OpenAl | N/A (context | Proprietary Claude 3.7, GPT- | GitHub’s own
LLMs DeepSeek Chat, AWS Bedrock, (incl. Azure), builder only) Augment models 40, Grok-2, Gemini, models (GPT-4.1,
OpenAl/Azure DeepSeek, Google Ollama, AiHubMix, + any MCP- Llama 3.1, plus hub GPT-4o0, ol/o3-
GPT, Google Gemini, Mistral, user-defined configured LLMs models mini, DeepSeek,
Gemini, AWS Ollama, local Cohere, Phi,
Bedrock, GCP Llama...)
Vertex, local
(Ollama, LM
Studio)
Agent Plan & Act, Chat, Code, Ask (Chat), Ask/Chat, Suggest, N/A Chat, Next Edit, Chat, Autocom- Inline completions,
Modes Completions Debug, Architect, Edit Completions, Agent | plete, Edit, Agent Copilot Chat, Agent
Orchestrator, mode
Custom modes
Context Project AST/regex, | Full index, | Buffer/selection, Checkbox tree | Cloud-indexed Highlighted Current file, diff,
Inputs selected @file/ diffs, @files/ | RAG file/folder, of files/folders, workspace, selected code, active IDE logs, web via
Q@folder, @folders, web search (Tavily, respects files/folders, images file, @Files, extensions
@problems, web/docs via SerpApi, Kagi, etc.) .gitignore/ @Folder,
Qurl MCP .towerignore, @Codebase,
project tree @Docs,
@Terminal,
@Git Diff
File Op- Create/edit with diff | Multi-file One-click apply Al N/A Create/edit/delete Apply/insert gener- Multi-file edits,
erations view, auto-fix lint/- read/write, diff- diffs across workspace ated blocks inline “next edit”
compiler errors based refactors propagation
Terminal Execute shell Execute commands, Build depen- N/A Execute shell Captures via Shell completions
commands, run tests, deploy dencies via commands, CI/CD @Terminal (no via Copilot CLI
“Proceed While | scripts :AvanteBuild scripts execution)
Running”, live (no real shell)
output
Browser Headless browser Automated browser | N/A N/A Via MCP integra- N/A N/A
automation testing & E2E tions
(click/type/scroll + checks
screenshots)
MCP / | Dynamic MCP Full MCP | mcphub.nvim, N/A Configure MCP Hub of shareable Ecosystem of
Extensi- client—add/custom support—unlimited Docker-based RAG servers via Ul or | assistants (models, | Copilot extensions
bility tools at runtime custom tools & service JSON prompts, rules) (StackOverflow,
modes Docker, etc.)
Versioning | Workspace Checkpoints & Chat-history picker | Live token count & Agent auto-pauses Session history; N/A
snapshots + VS “Boomerang” (no workspace preview invalidation & can skip actions new session resets
Code Timeline; rollback tasks snapshots) context
compare/restore
Config .clinerules, Custom disable_tools, outputFormat .augment Telemetry opt-out, | Model picker, dis-
& Cus- | token/cost Ul, | instructions/modes, cursor templates ignore, settings | sidebar placement, | able Copilot, key-
tomiza- custom instructions, auto-approve, _planning (blockTemplate, panel, index hub sign-in bindings
tion auto-approve ignore rules _mode, provider | blockSeparator, controls
toggles configs, RAG/web- wrapperFormat),
search settings, | ignore patterns,
highlight groups max-size warnings

key. Through adherence to the MCP, Goose dynamically
loads extensions that expose specialized tools, such as file
operations, web scraping, memory management, and integra-
tions with JetBrains IDEs or Google Drive. Its core engine
orchestrates an interactive loop in which user requests are sent
to the chosen LLM along with available tool metadata; the
model may then emit JSON-formatted tool calls that Goose
executes natively—running shell commands, editing files, or
invoking custom MCP servers—and returns the results for
the LLM to synthesize into a final response. This feedback
cycle continues until the user’s task is complete [186]. Goose’s
session management system preserves conversational state
locally, enabling shareable “recipes” that capture entire work-
flows—tools, prompts, and goals—in a reproducible format.
Context revision algorithms automatically summarize or prune
historical data to optimize token usage, and a robust error-
handling layer intercepts execution failures and feeds them
back to the model for correction. Permission modes allow
developers to delineate the agent’s autonomy, specifying in
a policy file which commands may run without confirmation.

4) MyCoder.ai: MyCoder.ai manifests as a robust, open-
source command-line interface that embeds state-of-the-art
large language models directly into developers’ workflows,
radically streamlining feature development, debugging, and
code maintenance. Through a single npm install -g mycoder,
users provision a modular agent that leverages Anthropic’s
Claude 3.7 Sonnet, various OpenAl GPT iterations, and self-
hosted engines such as Ollama, while also supporting the
Model Context Protocol to ingest external documentation and
tooling resources. Its architecture orchestrates parallel sub-
agents, enabling simultaneous code generation, refactoring,
and test execution without bottlenecking the primary control
flow, and it employs self-modifying routines so that the tool
can iteratively enhance its own behavior through tested code
iterations [187]. Configuration is driven by a hierarchical file
system—mirroring ESLint’s lookup patterns—with support
for JavaScript, JSON, YAML, TOML, and other common
formats, giving projects granular control over key settings
such as model selection, maximum token budgets, browser
automation preferences, and custom prompt templates. Inter-

action occurs either via an interactive REPL (mycoder -i),
one-off prompts, or headless CI invocations, with advanced
flags to disable user confirmations, enable interactive mid-
run corrections (triggered by Ctrl+M), or suppress upgrade
checks for unattended environments. Deep GitHub integration
ties issue comments to /mycoder commands, automatically
spawning branches, drafting pull requests, and interrogating
failing workflows.

5) RA.Aid: RA.Aid represents a significant advance in
autonomous software development by integrating LangGraph’s
agent-based task execution framework into a standalone,
Python-driven assistant. Upon installation via pip install ra-
aid, RA.Aid orchestrates a three-stage pipeline—research,
planning, and implementation—where each phase leverages
specialized Al models to accelerate complex programming
tasks. During the research stage, RA.Aid automatically mines
web search results and API documentation to assemble best-
practice examples and relevant code snippets, employing
providers like Google’s Gemini 2.5 Pro by default, with
optional fallback to OpenAl or Anthropic endpoints. In its
planning phase, the agent decomposes user-specified objec-
tives into discrete, ordered subtasks, crafting a logical roadmap
that ensures consistency and traceability in subsequent code
modifications. The implementation phase executes multi-file
transformations, injecting new features or refactoring legacy
modules, while continuously validating against existing test
suites and linting rules to preserve code quality [188]. Native
Git integration enables RA.Aid to commit changes safely,
manage branches, and roll back modifications when necessary,
all without leaving the CLI environment. Advanced users
can extend or customize its behavior by defining bespoke
commands, integrating additional LLM endpoints through
environment variables, or tailoring expert-model assistance
for domain-specific reasoning. RA.Aid also supports interac-
tive dialogue modes, allowing developers to intercede mid-
execution—adjusting parameters, injecting clarifications, or
refining instructions—thereby maintaining human oversight.

6) CodeSelect: CodeSelect is a minimalist, Python-driven
command-line utility designed to streamline the process of
packaging and transmitting source code to Al-driven assistants
by intelligently curating only the files an LLM truly needs for
context [189]. Upon invocation, CodeSelect performs a recur-
sive directory scan to construct an internal dependency graph,
leveraging import statements and file-relationships to infer
which modules are semantically connected. It then presents a
terminal-based selection interface—built with standard Python
libraries and requiring no external dependencies—where de-
velopers can navigate through a tree of directories and individ-
ual source files, toggling inclusion with intuitive keystrokes.
Once the desired set of files is marked, the tool assem-
bles an output payload in one of three formats: an “LLM-
optimized” bundle that embeds explicit module linkages and
contextual comments, a GitHub-flavored Markdown document
with syntax-highlighted code blocks, or a plain text archive
for maximum compatibility. To further expedite workflows,
CodeSelect can automatically copy the result to the system
clipboard or write it to a user-specified file, making it seamless
to paste into ChatGPT, Claude, or any other Al interface.

28

7) OpenAl Codex CLI: OpenAl’s Codex CLI transforms
the traditional command-line into an intelligent development
environment by embedding a lightweight, Al-driven coding
agent directly within the terminal session. Packaged under the
Apache-2.0 license and installable via a single npm install
-g @openai/codex invocation, Codex CLI leverages the Ope-
nAl API to interpret natural language prompts, generate or
modify source code, execute tests, and commit changes—all
without leaving the shell. The tool offers an interactive
Read-Eval-Print Loop (REPL) where developers can iterate
on fixes, refactorings, or entirely new modules, as well as a
headless mode for CI pipelines, enabling seamless integration
into GitHub Actions or other automation frameworks. Cen-
tral to its security architecture is a multi-tiered sandbox: on
macOS, Apple’s Seatbelt confines all operations to a read-
only jail (with only $PWD, temporary directories, and its own
cache writable), and on Linux, Docker-based isolation com-
bined with iptables firewall rules ensures egress is restricted
solely to the OpenAl endpoint. Through the —approval-mode
flag, users can calibrate Codex’s autonomy—ranging from
“suggest” (no file writes or shell commands without consent)
to “auto-edit” (automatically patching files) and “full-auto”
(unattended execution within a network-disabled workspace)
[190]. Configuration is equally flexible: environment variables
or a declarative JSON/YAML file in /.codex/ can specify
default model parameters, token limits, and custom API end-
points, while a local codex.md file and global instruction
markdown enable persistent project-specific guidance. Codex’s
design prioritizes auditability and reproducibility by logging
API requests when DEBUG=true, merging user and project
documentation hierarchically, and only committing changes
upon explicit user confirmation. Table X presents comparison
of command-line tools.

8) files-to-prompt: The files-to-prompt utility is a Python-
based command-line tool designed to streamline the prepara-
tion of source files for ingestion by LLMs. Once installed via
pip install files-to-prompt, this lightweight package traverses
one or more specified directories or file paths, reads each
text file, and emits a single concatenated stream in which
individual files are clearly delineated by their relative paths
and configurable separators. By default, it interposes — be-
tween files, but a NUL-character separator can be enabled for
safe handling of whitespace-laden filenames in piped input
scenarios (via —null). Users can limit inclusion to particular
file types using the -e/—extension flag, respect or override
.gitignore rules, and exclude files or directories matching shell-
style patterns (—ignore, —ignore-files-only). Two specialized
output formats facilitate seamless integration with modern
LLMs: the —cxml mode wraps each document in an Anthropic-
style XML schema optimized for Claude’s extended context
windows, while the —markdown option emits fenced code
blocks annotated with guessed language tags for tools like
GPT or self-hosted transformer models [191]. Additional flags
such as —line-numbers embed source line references, and -o/—
output redirects the aggregate prompt to a file. Critically, the
tool gracefully skips binary or mis-encoded files, issuing warn-
ings rather than failing, and imposes no external dependen-
cies beyond Python’s standard library, ensuring cross-platform

29

TABLE X: Comparison of Command-Line Tools
Tool Install & Runtime LLM Support & Core Capabilities Config & Extensibility | Permissions & Safety Non-Interactive / CI
Hosting Use
Claude npm install -g Anthropic Claude 3.7- NL to code edits and claude config Tiered approvals: read- claude -p allowedTools
Code @anthropic-ai/claude- Sonnet and 3.5-Haiku, bug fixes, Explain code CLI, Memories in only ok, Bash and for scripts and GitHub
code, Node 18+ Env-var switch to Ama- architecture, Run/fix CLAUDE(.local).md writes need approval, Actions, One-off
macOS 10.15+, Ubuntu zon Bedrock, Google tests and lint, Git | and Blocklists, Prompt- queries with claude -p
20.04+/Debian 10+, Vertex Al, Direct API search and merge- /.claude/CLAUDE.md, injection safeguards,
Windows (WSL), connection conflict resolution, MCP setup via claude Network allowlist,
Run claude, OAuth Commit and PR mep, Env-vars for | Optional devcontainer
via Anthropic creation, Extended | model/provider, Slash | firewall
Console, Optional thinking (/think) commands (/config,
git, GitHub/GitLab /memory)
CLI, ripgrep
Aider python -m pip install Claude 3.7 Sonnet, Al pair-programming .aideryml or .env for | Git diff review safety, Scriptable CLI,
aider-install and aider- DeepSeek R1 & chat, Codebase APl keys, CLI flags All edits through Git Shell/Python scripts,
install — aider, Python Chat V3, OpenAl mapping, Auto-commit (-model, —api-key, (revert possible), No No dedicated CI mode
3x venv-friendly, | o01/03-mini/GPT-4o, with sensible messages, | —interactive), In-chat | built-in network sand-
Optional Docker, Supports OpenAl, Lint and test after | commands (/add, box
Codespaces, Replit Anthropic, Gemini, change, Voice-to-code, /model, /help), Prompt
GROQ, LM Studio, Image/web context, caching
xAl, Azure, Cohere, 100+ languages, IDE
Ollama, OpenRouter, | integration
Vertex Al, Amazon
Bedrock, local models
Goose Installer/script Any LLM via MCP, Autonomous session | /.goose/config.json, Local-only execution goose run <recipe>
for macOS/Linux Built-in adapters for | recipes, JSON tool-call .goosehints for | by default, for headless workflows
ARM/x86, Windows Bedrock, Anthropic, loops, Error capture project context, Devcontainer with
via WSL, CLI (goose) Azure OpenAl, and retry, Context Permission modes default-deny firewall,
or Desktop, First-run Databricks, Gemini, revision and token and MCP allowlists, .gooseignore to
API key config Vertex Al, Groq, management, Fully Devcontainer recipes block files/dirs, Error
Ollama, OpenAl, on-machine execution feedback for recovery
OpenRouter, Custom
MCP servers
MyCoder npm install -g | Anthropic Claude fam- | Parallel sub-agents, | Config file formats: Interactive correction | Scriptable via CLI
.ai mycoder — mycoder | ily, OpenAl GPT-3/4, Self-modifying mycoder.config.js/ .rc/ (Ctrl+M), User consent (mycoder "..”, -f
(or mycoder -i), Ollama local models, code, Modular tool Jjson/ .yaml/ .toml prompts, Flags to prompt.txt), Flags
Node.js macOS/Linux, Mistral, MCP extension system, Color- or package.json, CLI disable prompts (- | for unattended runs
Optional ~ Playwright support coded hierarchical overrides (—interactive, userPrompt false) (—userPrompt false,
setup (npx playwright logging, GitHub | -userPrompt, - —upgradeCheck false)
install) issues/PR mode, upgradeCheck, -
Browser automation model, —baseUrl),
via Playwright MCP servers and
Playwright settings
RA.Aid pip install ra-aid — ra- Default Google Gemini Research, Planning, Env-vars for Safe Git wrappers, ra-aid -m task in
aid, Python 3.8+ venv | 2.5 Pro, Optional | Implementation stages, | GEMINI, OPENAI, | Confirm before | scripts, Logging flags
recommended OpenAl and Anthropic, | Web/documentation ANTHROPIC, destructive operations, | for CI (—log-mode file,
Web research via search, Multi-file TAVILY, CLI flags Built-in error handling, —log-level)
Tavily, Expert-model autonomous coding, (—chat, -m, —use-aider, Optional Aider
override via env-vars Safe Git operations, —log-mode, —log-level), sandbox
Interactive or single- | Expert-model settings
shot execution
Code Se- | One-line curl installer | N/A (exports code for | Interactive TUI file | CLI flags (-output, — | Read-only by design, | codeselect —skip-
lect — codeselect, Pure- external LLMs) selector, Dependency format, —skip-selection, No safety risks selection used in
Python, Zero depen- analysis, Context | —no-clipboard), No ex- pipelines
dencies, Cross-platform bundling, Export to ternal config file
Ilm/md/txt, Clipboard
copy
OpenAl npm install -g | OpenAl Codex/Chat- | Chat-driven scaffold- | /.codex/config.yaml Approval modes | codex auto-edit mode,
Codex @openai/codex — GPT via OpenAl API, run-test-commit loop, and (suggest, auto- CODEX_QUIET
CLI codex, Node 22+ on Configurable providers Sandbox execution /.codex/instructions.md, edit, full-auto), _MODE-=1, GitHub
macOS 12+, Ubuntu in 7.codex/config.yaml, and dependency CLI flags (-model, Sandbox using Apple Action snippets
20.04+, Windows 11 Supports OpenAl, auto-install, Iterative | —provider, -—approval- Seatbelt (macOS) provided
(WSL2), Requires | OpenRouter, Gemini, | edit/test cycles mode, —quiet, —notify, | or Docker+iptables
OPENAI_API_KEY Ollama, Mistral, —debug) (Linux), Network
DeepSeek, xAl, Groq disabled in sandbox,
Git-directory warnings
files-to- PyPI CLI tool (Apache Outputs Claude-style Concatenates files/dirs Fully flag-driven; no Read-only; honors .git- CLI-first; stdin/stdout-
prompt 2.0); pip install XML or fenced with path headers; sup- config file; supports ignore; skips binaries; based; ideal for shell
files-to-prompt; Markdown for use with | ports extension filters, | fine-grained file | null-safe for filenames; scripts, CI pipelines,
Python 3.64; no GPT, Claude, Hugging ignore rules, line num- inclusion/exclusion and avoids crashes on en- doc/gen tasks; stable
external deps; cross- Face, etc.; doesn’t call bering; skips non-UTF- custom output modes; coding errors exit codes; Zero
platform LLMs directly 8 MIT-licensed prompts
Repomix Node.js CLI (npx Outputs Markdown, Bundles repos with Uses Secretlint detects Runs via CLI, Docker,
repomix); requires XML, or plain token counting, repomix.config. jsoncredentials; skips or npx in CI; sup-
Node 18+ and Git; also text for any LLM: optional comment supports glob rules, binaries/non-UTF-8; ports —quiet, —remote, —
available via Docker | Claude, GPT, Gemini, | stripping, Tree- | style options, header | respects .gitignore; | parsable-style; ideal for
and Homebrew; DeepSeek, Grok, sitter—based text, Tree-sitter; has MCP-safe; path scripted prompt genera-
repomix --init Llama, Perplexity, etc. compression; reports JS API + VS Code validation prevents tion
sets config 0200k token stats extension traversal

compatibility on Linux, macOS, and Windows. Under an
Apache 2.0 license, files-to-prompt offers a robust, extensible
foundation for anybody seeking to inject entire codebases or
documentation directories into LLM prompts, enabling more
coherent context windows and reducing the manual effort of
assembling prompts for Al-driven code analysis or generation.

9) Repomix: Repomix is a sophisticated command-line
application engineered to transform an entire code repository
into a unified, Al-digestible artifact that can be efficiently
ingested by contemporary large language models such as
ChatGPT, Claude, Gemini, Llama and others. By traversing
a project’s directory tree (with respect for .gitignore and
custom ignore patterns), Repomix collates source files into
a single output stream—available in structured XML for pre-
cise parsing, Markdown with syntax-highlighted code blocks
for human readability, or plain text for maximal compat-
ibility—augmented with optional directory summaries, file
metadata and line numbers. Its pipeline can optionally strip
comments, collapse empty lines and apply Tree-sitter—driven
code compression that preserves function signatures, type
definitions and class structures while eliding implementation
details, thereby reducing token overhead without sacrificing
critical context. Security is integral: Secretlint is invoked to
detect and omit credentials and sensitive tokens, and binary or
non-UTFS8 files are automatically skipped or warned, ensuring
no private data is inadvertently exposed [192]. Repomix also
computes token counts per file and for the entire output
against common encoding schemes, enabling developers to
gauge model context utilization. Installation is trivial—via npx
repomix, global npm or Homebrew—and the tool can run in
any isolated environment using its Docker image, making it
ideal for CI/CD pipelines and headless automation. A one-
step repomix —init generates a JSON configuration file for
persistent preferences—control over output style, inclusion/ex-
clusion globs, compression and security settings—while an
official VS Code extension (i.e. “Repomix Runner”) embeds
packing commands directly into the developer’s IDE workflow.
Beyond its CLI, Repomix exposes a Node.js API (e.g. runCli,
searchFiles, processFiles, TokenCounter), empowering teams
to integrate code-packing logic into custom build systems or
evaluation frameworks.

E. Task Management for Al Coding

In vibe coding, managing complex workflows requires in-
telligent decomposition and orchestration. Task management
tools like Boomerang Tasks and Claude Task Master bring
structure and clarity to multi-step development goals by
transforming high-level objectives into focused, executable
subtasks. These agentic systems coordinate LL.M-driven task
flows, maintain contextual isolation, and streamline execu-
tion—either within the IDE or via CLI—empowering de-
velopers to work more efficiently without losing control or
oversight.

1) Boomerang Tasks: Boomerang Tasks in Roo Code in-
troduce a paradigm of hierarchical workflow orchestration
that systematically decomposes large-scale development ef-
forts into discrete, contextually isolated subtasks. When a

30

user invokes the built-in Orchestrator mode, Roo examines
the overarching objective—such as designing and deploying
a microservices architecture—and programmatically generates
subordinate tasks, each executed under a specialized mode
(for instance, the Code mode for implementation or the
Architect mode for high-level planning). These subtasks are
instantiated via the new_task tool call, inheriting only the
precise instructions passed through its message parameter,
and run with a clean conversation history to prevent context
bleed [193]. Upon completion, each subtask emits a distilled
summary via the result parameter of the attempt_completion
tool, which the parent orchestrator resumes processing, ensur-
ing that only essential outcomes inform subsequent steps. By
default, Roo requires user approval for the lifecycle of each
subtask, although an “Always approve creation & completion
of subtasks” setting can automate this handshake.

2) Claude Task Master: Claude Task Master is an advanced
Al-driven task orchestration framework designed to integrate
seamlessly into diverse development environments via MCP
or as a standalone command-line interface. At its core, Task
Master leverages Anthropic’s Claude model—requiring only
an Anthropic API key—and optionally integrates with the
OpenAl SDK to incorporate Perplexity search capabilities.
Through MCP, developers can embed Task Master directly
within their preferred editor—Cursor Al being a prime exam-
ple—by specifying an mcpServers entry that invokes the task-
master-ai package via npx, along with environment variables
for model selection, token limits, default subtask counts, and
priority settings. Once configured, Task Master can be ini-
tialized simply by prompting the Al to “initialize taskmaster-
ai,” after which it can parse product requirement documents,
auto-generate prioritized task lists, and suggest the next ac-
tionable item without leaving the editor context [194]. For
teams preferring a more traditional setup, Task Master can be
installed globally with npm install -g task-master-ai (or locally
via npm install task-master-ai), and bootstrapped into a project
using task-master init, which scaffolds the necessary config-
uration files and task directories. Users then employ intuitive
commands—such as task-master parse-prd, task-master list,
task-master next, and task-master generate—to manage and
evolve their project backlog. Table XI shows comparison of
task management for Al coding tools.

V. DISCUSSIONS ON VIBE CODING ASPECTS

This section systematically explores the multifaceted di-
mensions of vibe coding, focusing on its benefits, practical
implementation strategies, challenges to avoid, and critical
distinctions from traditional development paradigms. By ex-
amining both the opportunities and responsibilities introduced
by LLM-assisted software generation, it outlines actionable
insights for developers, teams, and organizations aiming to
adopt vibe coding effectively and sustainably.

A. Envisaged Benefits and Opportunities

Vibe coding transforms software development by enabling
rapid prototyping, intent-driven coding, and inclusive collab-
oration through natural language prompts. It reduces devel-
opment overhead, accelerates experimentation, and integrates

31

TABLE XI: Comparison of Task Management for Al Coding Tools

Aspect Boomerang Tasks

Claude Task Master

Core Function

Built-in orchestrator mode that decomposes a complex request into
isolated subtasks running in specialized modes (Code, Architect, Debug)

Al-driven task manager that parses PRDs, generates and prioritizes tasks,
and tracks progress via MCP integration or CLI

Integration Native to Roo Code; no external installs required

Embeddable via MCP in editors like Cursor, Lovable, Windsurf, Roo or
installable as a global/local npm package

Dependencies Roo Code platform

Requires Anthropic API key (Claude); optional OpenAI SDK for Perplex-
ity; Node.js for npm package

Subtask Orchestra-
tion maries passed back to parent task

Automatic delegation to specialized modes with isolated contexts; sum-

Generates subtasks from PRDs or manual prompts; stores tasks in project
files and tracks via CLI or editor commands

Context
Management

Full context isolation per subtask; parent only sees high-level summaries

Maintains persistent task list and context in a .taskmaster directory; queries
preserve conversation context within each task

Approval Workflow
approval for creation/completion

Configurable “Always approve subtasks” setting; default requires manual

Task approval is implicit—commands execute immediately; manual inter-
vention via CLI commands

Configuration

Orchestrator mode toggled via Roo’s Ul or .roomodes/custom_modes.json

JSON/YAML config via MCP entry in editor settings or task-master
init-generated project files

Execution Environ-

Runs entirely within Roo Code, leveraging its toolset (read, edit, browser,

Runs as an external process invoked by npx task-master-ai or global task-

can invoke any Roo Code mode

ment command, MCP) master binary

Security Subtasks inherit only parent’s permissions; command whitelist for auto- Relies on the hosting environment’s permissions; no built-in sandboxing
execute terminal operations beyond Node’s defaults

Automation Leverages Roo’s mode architecture for deep customization; new subtasks Plugin-style: can extend via MCP servers; supports custom environment

variables for model, tokens, and default behaviors

User Interface Roo’s conversation UI with a task hierarchy panel

CLI and editor prompts; users interact via commands (init, list, next,
parse-prd, etc.) and can script workflows

Licensing Apache-2.0 license

MIT License with Commons Clause—free to use/modify but not to resell
as a hosted service

Ideal Use Case

plementation — debugging)

Developers orchestrating multi-mode Al workflows (e.g. design — im-

Teams needing structured task breakdown from PRDs and lightweight
project management via Claude Al

automated quality checks, all while fostering innovation across
diverse technology stacks. This section highlights key advan-
tages of vibe coding that streamline workflows and enhance
both individual and team productivity.

1) Speed of Prototyping: By leveraging LLMs with code
synthesis capabilities, vibe coding platforms dramatically
compress the interval between ideation and a runnable
prototype. Instead of manually setting up project scaf-
folds—initializing version control, configuring build scripts,
wiring up database connections, and crafting boilerplate
CRUD endpoints—developers express high-level requirements
in natural language [195], [196]. The Al agent then interprets
those intents, generates project skeletons, populates configu-
ration files, and even spins up containerized environments for
immediate experimentation. For example, a prompt such as
“Create a RESTful Node.js service with user authentication via
JWT, PostgreSQL persistence, and Swagger documentation”
yields a complete microservice blueprint in minutes. This
reduction in lead time accelerates stakeholder feedback loops:
product managers and UX designers can validate workflows
on functioning UI mocks in hours rather than days. Moreover,
automatic generation of both frontend (i.e. React components
with hooks) and backend allows cross-functional teams to
converge on an MVP without coordinating separate handoffs.
As a result, continuous delivery pipelines can be seeded on day
one, enabling iterative refinement through real-world telemetry
and user testing, and ultimately shortening time-to-market by
an order of magnitude.

2) Democratization of Software Creation: Vibe coding dis-
solves traditional barriers between technical and non-technical
roles by abstracting away the need to author syntax-correct
code. Domain experts—be they marketing strategists, financial
analysts, or biomechanical engineers—can articulate product
requirements in everyday language and observe Al-generated
implementations in real time [197]. This democratization
transforms software development into a participatory design

process: stakeholders directly contribute feature definitions,
acceptance criteria, and even test scenarios without waiting
for developer mediation. Agentic IDEs can host collaborative
sessions where prompts are co-edited, and Al agents generate
annotated code snippets that non-coders can tweak visually in
a low-code environment. Such inclusion not only accelerates
consensus but also reduces ‘“handoff entropy,” the extent
to which knowledge is lost when transferring requirements
between teams [198].

3) Shift from Syntax to Intent: Traditional develop-
ment mandates a meticulous understanding of program-
ming language grammars, APIs, and framework conven-
tions—cognitive overhead that can obscure core problem-
solving. Vibe coding reverses this paradigm by elevating intent
expression above code syntax. Users specify desired behav-
iors—"“Populate a time-series chart with hourly server load
data, highlighting anomalies above the 95th percentile”—and
the Al agent materializes the corresponding data retrieval
logic, statistical analysis functions, and charting directives.
This shift liberates developers to focus on domain modeling:
defining data schemas, crafting business rules, and optimizing
architectural patterns rather than writing repetitive loops or
import statements. Additionally, as the AI abstracts away
language-specific idioms, teams can prototype in the language
or framework best suited to the domain (Python for data
science, Rust for systems programming) without steep learning
curves. Cognitive resources are reallocated from remembering
method signatures to refining algorithms, performing complex-
ity analysis, and ensuring scalability [199].

4) Emergent UX Paradigms in IDEs: The integration of
conversational Al agents into development environments trans-
forms code editors into interactive, multimodal workspaces.
Rather than toggling between terminal windows, documen-
tation tabs, and debugging consoles, developers engage with
inline chat interfaces that respond to voice or typed prompts,
generating code snippets, refactoring suggestions, and even de-

ployment configurations in context [200]. These agentic IDEs
surface intelligent recommendations alongside the source file,
intelligently adapting suggestion granularity based on cursor
location and project metadata. Visual “canvas” overlays allow
direct manipulation of Ul components—dragging generated
buttons or forms into a preview pane triggers corresponding
JSX or HTML output—while the AI maintains synchroniza-
tion between the visual layout and underlying code. Voice-
enabled commands further reduce mode switches, enabling
hands-free refactoring during pairing sessions or standup de-
mos.

5) Enhanced Knowledge Sharing: Vibe coding platforms
inherently produce richly annotated code artifacts, which em-
bed the rationale behind design choices, prompt histories, and
auto-generated test cases [201]. These annotations serve as
in-line documentation, enabling peers to quickly grasp the
intent and logic of complex modules without extensive code
walkthroughs. When Al-driven pull requests are submitted,
the system can automatically generate a natural-language sum-
mary of key changes, highlight potential merge conflicts based
on semantic analysis, and suggest reviewers with domain
expertise drawn from organizational knowledge graphs. Dur-
ing code review, the Al can flag deviations from established
architectural patterns, security guidelines, or performance best
practices, linking to corporate style guides and regulatory
compliance documents.

6) Resource Optimization: Automating routine develop-
ment tasks through vibe coding yields significant cost sav-
ings by reducing the human hours required for boilerplate
implementation, debugging, and infrastructure setup [202].
Engineering managers can reallocate staff toward high-value
responsibilities—such as architectural review, performance
tuning, or security audits—while Al agents handle scaffold-
ing of microservices, infrastructure-as-code (e.g. Terraform®,
CloudFormation®) provisioning, and error-resolution for com-
mon exception patterns. This “lean coding” approach shrinks
sprint backlogs, minimizes technical debt accumulation, and
compresses Gantt chart timelines for new feature rollouts.
Startups benefit particularly, as they can maintain lean teams
without sacrificing the breadth of expertise: one developer,
augmented by AIl, can prototype full-stack solutions, de-
ploy to Kubernetes clusters, and integrate third-party services
with minimal overhead. Long-term, this resource optimization
lowers Total Cost of Ownership (TCO) for software assets,
while continuous Al-driven maintenance reduces operational
expenditures related to patching and codebase audits.

7) Automated Quality Assurance: Within a vibe-coding
pipeline, Al agents automatically generate and maintain ex-
haustive test suites—spanning unit, integration, and end-to-
end levels—alongside the production code with minimal hu-
man effort. Utilizing code-coverage metrics and mutation-
testing frameworks, the system uncovers untested pathways,
synthesizes targeted input values, and constructs mock objects
or fixtures to simulate external services. Tests are contin-
uously regenerated in response to code changes, ensuring

9 https://www.terraform.io/
9https://aws.amazon.com/cloudformation/

32

alignment with evolving logic and eliminating regression drift.
Al-powered mutation scoring highlights fragile assertions or
vague test conditions, guiding developers to strengthen checks
or adopt property-based testing for greater resilience [203].
By embedding QA as an integral part of the development
flow rather than a separate post-hoc activity, teams gain faster
feedback loops, higher confidence in releases, and significant
reductions in manual testing overhead.

8) Accelerated Developer Onboarding: Onboarding new
engineers often entails navigating sprawling codebases, deci-
phering convoluted class hierarchies, and understanding im-
plicit domain logic [204]. Vibe coding tools mitigate this
ramp-up curve by providing interactive exploration assistants:
developers can query the Al “How does the order-processing
module handle payment retries?” or “Show me all services
that consume the ShippingEvent message.” The agent then
dynamically summarizes code paths, visualizes dependency
graphs, and generates annotated call-stack diagrams. Addi-
tionally, prompt-driven snippet generation allows newcomers
to request example usage patterns— “Give me sample code to
create a customer record in the CRM microservice”—which
they can experiment with in sandboxed environments.

9) Rapid Experimentation: Vibe coding’s minimal config-
uration requirements promote an exploratory workflow, al-
lowing teams to rapidly generate ephemeral prototypes for
complex scenarios such as real-time analytics dashboards,
ML inference pipelines, or cross-platform mobile proofs-of-
concept. When adopting new technologies—such as embed-
ding WebAssembly for heavy compute operations—the Al
agent can automatically compose build pipelines, generate
foreign-function interface (FFI) bindings, and create Docker
multi-stage configurations without manual trial-and-error. This
“fail-fast” approach lets developers assess viability, capture
performance metrics, and refine algorithmic strategies prior to
full-scale deployment [205].

10) Stack-Agnostic Development: Because vibe coding
agents are trained on heterogeneous corpora spanning mul-
tiple programming languages, frameworks, and infrastructure
paradigms, they can generate interoperable code across diverse
technology stacks within a single session [206]. For instance,
a single prompt may yield a React Native mobile frontend
that communicates with a Django REST API and persists data
to a MongoDB cluster managed by Kubernetes. This polyglot
capability eliminates the need for developers to context-switch
between disparate IDEs or master multiple SDKs. It also
simplifies the orchestration of heterogeneous microservice
architectures, as the Al can synthesize OpenAPI specifica-
tions, client SDKs, and service mesh configurations (e.g. Is-
tio'%, Linkerd'®!) automatically. Consequently, organizations
can pursue best-of-breed solutions across layers—selecting
the most suitable language or framework for each compo-
nent—without incurring integration overhead or steep learning
curves.

11) Telemetry: Advanced vibe coding platforms embed
telemetry hooks directly into generated code, capturing run-

10https://istio.io/
10T https://linkerd.io/

time metrics such as API latency distributions, resource
utilization, and error rates [207], [208]. These agents can
automatically instrument functions with observability con-
structs—OpenTelemetry spans'®?, Prometheus exporters'®,
and structured log statements—in accordance with organiza-
tional monitoring standards. Real-time dashboards visualize
prompt efficacy, code performance, and user engagement
metrics for generated Uls. This continuous feedback informs
iterative prompt refinement: poorly performing code patterns
trigger recommendations for alternative implementations or
parameter adjustments. Over time, the system learns which
prompt formulations yield the most efficient, secure, and
maintainable outputs, effectively fine-tuning the AI’s internal
heuristics.

B. Proposed Best Practices When Adopting Vibe Coding

Successfully adopting vibe coding demands more than
just plugging in an LLM—it requires methodical, disci-
plined engineering workflows that maximize AI productivity
while minimizing risks. This subsection outlines actionable
best practices to align Al agents with human development
norms, ensuring reproducibility, code quality, security, and
maintainability. From context priming and prompt versioning
to sandboxed execution, shared prompt libraries, and skill-
preserving routines, these strategies help teams harness Al as
a trustworthy collaborator rather than a brittle shortcut.

1) Start Every Session With Context Priming: Before vibe
coders type the first “build me a...” prompt, they should
pause and hand the agent the same briefing coders would
give a junior engineer who just joined the stand-up [209].
In vibe-coding, the model’s initial hidden state becomes its
working memory for the entire conversation. If that memory
omits critical constraints—say, PCI-DSS encryption rules, a
requirement to stay within a hexagonal architecture, or a
ban on introducing new runtime dependencies—the assistant
will happily generate code that violates them. A concise but
complete primer establishes the “edges of the playground.”
Include three elements: (i) the high-level business goal distilled
to one or two sentences, (ii) hard architectural or regulatory
constraints written in imperative voice, and (iii) links or inline
snippets of the most relevant design artifacts: Architectural
Decision Record (ADR) numbers, schema diagrams, style-
guide URL, or a short example of idiomatic code. Doing so
increases factual grounding, reduces hallucination, and short-
ens the number of turns coders need to reach an acceptable
solution because the model no longer guesses at unstated rules.
When context windows are tight, serialize this primer into a
single markdown file and re-attach it with each request; when
windows are roomy, keep it pinned. Either way, a disciplined
priming ritual keeps every subsequent generation on the rails
and preserves alignment when multiple developers jump in
and out of the chat at different times of the day.

2) Keep Prompts Under Version Control: A prompt that
produces a working microservice today can produce a sub-
tly different one tomorrow after a vendor model update, a

102https://opentelemetry.io/docs/concepts/signals/traces/
103https://prometheus.io/docs/instrumenting/exporters/

33

temperature tweak, or a context-size change. If the prompt
lives only in the ephemeral scrollback of a chat Ul, coders
may lose the ability to reproduce, audit, or roll back the
conversation that birthed that code [210]. Vibe coders should
treat prompts as first-class artifacts: check them into the
repository beside the modules they influenced, give them
semantic commit messages, and review them like any other
source change. Store both the raw prompt and the agent’s
own TL;DR summary so future readers understand intent
and outcome. This practice yields three dividends. First, it
creates a legally defensible provenance trail by showing how
each line of code was derived, which licensing scans and
compliance auditors increasingly demand. Second, it enables
fast incident response: if a regression surfaces, coders can diff
the prompts that generated the faulty module against earlier
versions and pinpoint which requirement drifted. Third, it
fosters organization-wide knowledge sharing; engineers can
grep the repository for “prompt: generate cache-layer” and
reuse proven incantations instead of re-inventing them. Adopt
a naming convention such as prompts/feature-xyz-2025-05-
0l1.md, and wire a pre-commit hook that warns when a code
diff references files created by an undocumented prompt.

3) Treat the Model as a Junior Teammate: While vibe-
coding agents can quickly generate scaffolding and routine
fixes, they lack the nuanced design judgment that seasoned
engineers develop over time [211]. To maximize their utility,
developers should engage the AI as they would coach a
junior colleague: define explicit goals, let the agent propose a
solution, execute the test suite, and then examine the changes
at a granular level. This approach reframes the AI from
an all-knowing oracle into an enthusiastic intern, fostering
constructive skepticism. It also organizes the collaboration
into concise feedback loops—for example, “This Jest test is
failing; please adjust only the ‘validateUser* function.” The
agent updates the critical code path, reruns tests, and provides
results.

4) Enforce Automated Quality Gates: The seductive speed
of vibe-coding can tempt teams to merge code before tra-
ditional checks complete. That shortcut is a false economys;
regression bugs, unpinned dependencies, and security vul-
nerabilities surface later when the cost of repair is orders
of magnitude higher [212]. Vibe coders should integrate lin-
ters, SAST scanners!%, mutation-testing frameworks, license
auditors, and dependency-health monitors directly into the
continuous integration pipeline and mark their pass criteria
as non-negotiable. Generated code should pass the exact same
bar as human-authored code. If your assistant writes Go, run
go vet and go sec; for JavaScript, run ESLint'% with your
custom rule set, npm audit, and a dependency freshness report.
Configure mutation tests such as Stryker'® to break the code
on purpose and verify that the agent’s generated tests catch
the tampering. When a gate fails, feed the error log back to
the agent with a narrow prompt.

5) Rotate “Al-Silent” Intervals: The cognitive muscles
involved in reasoning about algorithms, memory models, or

104https://owasp.org/www-community/Source_Code_Analysis_Tools
105https://eslint.org/
106https://github.com/stryker-mutator/stryker-net

distributed system failure modes will atrophy if they sit idle.
Schedule periodic “silent sprints” where the team disables
Al completion and relies solely on human skill. These in-
tervals can coincide with refactoring weeks, deep technical-
debt pay-downs, or exploratory spikes where fine-grained
understanding is paramount. The benefits are two-fold. First,
developers retain fluency in the underlying language primitives
and debugging workflow, which remains indispensable when
an outage locks vibe coders out of the assistant or the model
misfires. Second, the contrast surfaces which tasks truly benefit
from automation and which remain better handled by humans.
Engineers returning to Al-assisted mode often refine their
prompt strategies and guardrails having freshly experienced
the pain points. Document the discoveries—and bake them
into future prompting guidelines. Regularly exercising pure
human craftsmanship ensures Al remains a catalyst, not a
crutch.

6) Sandbox Autonomy: Modern assistants can read files,
edit code, run unit tests, install packages, and even execute
shell scripts [213]. While that autonomy accelerates iteration,
it also opens doors to supply-chain attacks, accidental data
deletion, or runaway billing via infinite loops. A prudent
workflow grants the model limited but useful powers. Allow it
to edit files inside a designated workspace and invoke npm test,
but require explicit human confirmation for actions that mutate
system state outside that boundary: apt-get install, docker
build, or terraform apply. Many tools expose policy files
where users can whitelist safe commands and block or prompt-
gate risky ones. During early adoption, run in “proposal
mode” where every tool call is intercepted and only applied
after review; as confidence grows, selectively graduate certain
commands to auto-approve. Pair this with containerized sand-
boxes—Docker or dev-containers—to ensure any destructive
experiment stays isolated. The objective is to strike a balance-
enough freedom for genuine productivity gains, but not so
much that a single hallucinated rm -rf wipes the repository.

7) Adopt Model Pluralism: LLM platforms evolve quickly;
prices fall, token limits expand, and quality varies by domain.
Hard-coding your workflow to a single vendor’s API cedes
strategic flexibility and exposes vibe users to outages or policy
shifts. Instead, vibe coders can place an abstraction layer—a
thin client or environment variable—that routes prompts to
interchangeable backends [214]. Tools like Cursor, Continue,
or custom proxy scripts already support OpenAl, Anthropic,
Claude, Groq, Gemini, local Ollama models, or even smaller
domain-fine-tuned checkpoints. Users an benchmark each
backend on representative tasks: refactor latency-sensitive in-
ner loops, scaffold CRUD pages, or write GPU kernels. Record
metrics such as cost per thousand tokens, pass rate on your
test corpus, and developer satisfaction. Coders should select a
default, but keep fallbacks. When a provider introduces a more
capable model, flip a feature flag rather than rewriting prompts.
Model pluralism also mitigates compliance hurdles - if policy
bans public endpoints, switch to an on-prem model behind the
same interface. Designing for interchangeability future-proofs
the workflow and invites healthy vendor competition.

8) Publish Shared Prompt Libraries: Prompts evolve from
fragile incantations into refined micro-templates through

34

repeated iteration. Capturing those high-yield prompts in
a central library multiplies their value across the or-
ganization and drives consistency in generated output.
Coders should start by storing successful prompts in
a repo folder—prompts/database_schema.gpt.md—with three
sections: use-case description, input variables, and known lim-
itations. Encourage contributors to add comments explaining
why specific phrases improved reliability. Surface the library
inside the IDE via snippets or a chat-assistant autocomplete
so teammates can discover and adapt templates during live
coding. Vibe coders should periodically prune obsolete entries
and annotate with versioned model hints because a prompt
tuned for GPT-3.5 might under-perform on GPT-40 without
tweaks. Treat the library as living documentation: review ad-
ditions in pull requests, require at least one peer approval, and
tag each entry with domains—frontend, DevOps, security—so
newcomers search efficiently.

9) Balance Focus in Context Windows: Large context
windows tempt teams to dump entire repositories into each
prompt. Although modern models can handle hundreds of
thousands of tokens, relevance still matters: the soft-attention
weighting spreads thin across extraneous files, increasing the
chance the model fixates on outdated code. Instead, vibe
coders may adopt a “just enough context” discipline. User
should provide the current file, direct dependencies, and any
ADR or schema docs strictly necessary for the task. Use helper
tools—Prompt Tower'?’, CodeSelect'”®, Repomix—to curate
minimal bundles, and rely on file-path summaries or directory
trees instead of raw contents when high-level orientation
suffices. This approach cuts token costs, reduces inference
latency, and raises answer quality because the model can
focus attention on salient details. Build heuristics or scripts
that compute dependency graphs to automatically suggest the
minimal context set. When in doubt, start with a narrow
prompt and expand if the assistant asks clarifying questions.

10) Capture Learning in Post-Mortems: Every Al inter-
action—whether success or failure—contains lessons about
prompt phrasing, context selection, or agent capabilities. Make
those lessons explicit through lightweight post-mortems. After
a major merge or production incident, vibe coders can add a
section called “Al interaction analysis” to the retrospective
document. Users should note which prompts produced high-
quality code, which hallucinated, how much time was spent
iterating, and whether guardrails fired. Where possible, attach
the offending or exemplary prompt transcripts. Update team
guides: add new best-practice snippets, tighten sandbox rules,
or raise CI thresholds. Users should feed insights back into
the shared prompt library and into onboarding slides for new
hires. Over weeks, these incremental adjustments compound,
drastically reducing future friction. Post-mortems also preserve
organizational memory; when turnover occurs or new models
replace old, the rationale behind established guardrails remains
documented, preventing the team from repeating earlier mis-
takes.

107https://github.com/backnotprop/prompt-tower
108https://github.com/maynetee/codeselect

C. Proposed Practices to Avoid When Using Vibe Coding

Despite its advantages, vibe coding can introduce critical
risks if applied carelessly. This subsection highlights com-
mon missteps—such as treating Al output as production-
ready, overloading context windows, or bypassing human
judgment—that undermine reliability, security, and engineer-
ing discipline [215], [216], [217]. Avoiding these pitfalls is
essential to ensure that Al acts as a scalable collaborator, not
an unreliable shortcut.

1) Treating Al Output as Production-Ready: Because
LLMs optimize for plausible text rather than verified seman-
tics, their code can compile yet contain subtle race conditions,
off-by-one errors, or unsafe defaults. Blindly merging gener-
ated pull requests elevates the risk of latent bugs that manifest
under load or edge cases. For instance, the model may handle
nominal flows but omit negative path checks, leaving the ser-
vice vulnerable to null dereferences or unchecked exceptions.
Worse, it might reproduce GPL-licensed snippets from training
data, creating hidden compliance landmines. Therefore, every
Al-produced diff demands the same diligence vibe coders
should apply to colleague submissions- manual review, pair
walkthroughs, and regression testing. Use static analyzers to
detect concurrency hazards, run dynamic fuzzers to expose
boundary-value failures, and employ code-review checklists
purposely expanded to cover Al-specific pitfalls such as miss-
ing unit tests for error states or lack of idempotency in REST
handlers.

2) Flooding the Model With the Whole Repository: A naive
strategy is to feed the assistant every source file hoping it
will “understand everything.” In practice, gargantuan prompts
degrade output quality. The attention mechanism still has finite
resolution- diluting it across thousands of tokens forces the
model to rely on statistical priors rather than the task-critical
details buried inside the sprawl. Token bloat also balloons cost
and latency; an extra hundred thousand tokens per call can
multiply monthly bills. Worse, vibe coders may risk leaking
confidential logic if the prompt traverses directories that house
proprietary algorithms outside the scope of the current task.
The antidote is context minimization. Curate inputs through
dependency analysis or manual selection, and keep extraneous
content behind summary placeholders. Tools like Repomix’s
tree-sitter compression can supply skeletal function signatures
without implementation bodies, giving the model architectural
orientation without oversharing. Practitioners who adopt this
discipline report sharper, more deterministic answers, lower
hallucination rates, and dramatically reduced inference costs.

3) Embedding Secrets / Personal Data in Prompts: De-
velopers occasionally paste error logs or .env files into chat
windows to expedite debugging. If those logs contain tokens,
access keys, or personal data, they are transmitted to external
inference servers beyond your administrative control. Even
providers who promise no retention may store encrypted back-
ups or retain telemetry for abuse detection, creating regulatory
exposure under GDPR or HIPAA. Additionally, inadvertently
disclosing proprietary algorithmic details can jeopardize trade-
secret protection. Adopt redaction tools that scan clipboard
content before submission, masking 32-character hex strings

35

or email addresses. Vibe codes should strip or hash Person-
ally Identifiable Information (PII) fields in exception traces.
Where sensitive data is unavoidable, route queries through a
self-hosted LLM within your secure perimeter. Organizations
should train engineers in safe-prompt hygiene the same way
vibe coders should train them in secure coding- treat prompts
as network egress. Once a secret leaves the boundary, it cannot
be unshared.

4) Skipping Failed CI Stages: Under deadline pressure,
teams might disable flaky tests or merge “green enough”
code. Automation amplifies this temptation: because the Al
can regenerate fixes quickly, developers may assume any
regression can be patched later. Yet skipping CI erects a debt
time bomb. Undetected failures propagate downstream, mul-
tiply across services, and complicate root-cause analysis. The
cost to unwind grows non-linearly as each dependent commit
assumes the broken behavior. Maintain a zero-tolerance policy-
if linters, mutation tests, SAST scans, or license checks fail,
the merge is blocked. Vibe codes should teach the assistant
to treat failures as first-class tasks paste the CI log and
instruct it to propose a minimal fix. If the fix bloats the
diff, vibe coders should refine the prompt to scope narrower.
Enforcing this discipline upholds engineering rigor and signals
to stakeholders that Al acceleration does not equal process
shortcuts.

5) Letting the Agent Choose Dependencies Unsupervised:
Language models possess no intrinsic sense of library maturity,
maintenance cadence, or CVE history. When prompted to
“add JWT support,” the assistant might import an obscure
GitHub project with two stars, last updated three years ago,
and riddled with vulnerabilities. Such transitive dependencies
can bypass internal vetting and embed malicious code paths.
Vibe coders should always review newly proposed pack-
age.json or requirements.txt entries. Check license compati-
bility, evaluate contributor activity, and scan for open CVEs.
Pin exact versions and configure bots like Dependabot to alert
on updates. In regulated environments, require that any new
dependency passes your organization’s software-composition
analysis and is mirrored in an artifact repository. Explicit
constraints guard against dependency confusion and ensure
long-term maintainability.

6) Delegating Architectural Design Decisions Blindly:
Architectural integrity—data consistency guarantees, latency
budgets, domain boundaries—emerges from holistic reasoning
about system goals, constraints, and trade-offs. LLMs excel at
pattern replication but cannot foresee emergent behaviors in
distributed systems. A generated microservice pattern might
look correct in isolation yet violate idempotency assumptions
when subjected to concurrent writes, or overload a single point
of failure like a Redis cache. Use the assistant to surface
options and scaffolds, but human architects must validate
throughput modeling, failure modes, and scalability plans.
Vibe coders must formalize this in the prompt: “Propose three
storage approaches with pros and cons; do not commit code.”
Review diagrams, select an option, then ask the assistant to
implement. This two-stage process keeps strategic control in
human hands, limiting Al to tactical execution where it excels.

7) Running in “Always-Approve” Execution Modes: Some
tools let vibe coders flip a flag so every file edit, shell com-
mand, or browser fetch executes without confirmation. This
convenience turns dangerous when the model misinterprets a
prompt or succumbs to adversarial input. A single hallucinated
rm command could wipe env-files; an npm install could fetch
a typosquatted package that exfiltrates secrets. Vibe coders
should maintain interactive approval for destructive operations-
database schema changes, infrastructure provisioning, or shell
scripts outside the workspace. If throughput demands higher
automation, implement policy gating- only commands match-
ing a whitelist pattern auto-execute; everything else pauses for
review. Pair with execution logs stored in version control or
SIEM systems for post-hoc auditing.

8) Allowing Prompt Histories to Sprawl in Chat Tools:
Slack threads or web chat windows fragment conversation con-
text, burying decision rationale behind ephemeral scrollback or
access-controlled SaaS tenants. When engineers leave or chan-
nels archive, the why behind a code segment evaporates. In-
stead, co-locate prompt transcripts with code. Vibe coders can
use markdown files named after the feature branch, commit
SHA, or ticket ID. Link them in the pull request description so
reviewers can cross-reference. This practice streamlines audits,
eases onboarding, and complies with traceability mandates
in regulated environments. It also unlocks future automation-
scripts can mine these transcripts to extract reusable prompt
snippets or build vector search indexes for retrieval-augmented
prompting.

9) Relying on a Single Vendor’s Closed Ecosystem: En-
trusting your development pipeline to one provider exposes
vibe coders to pricing shocks, API deprecations, or re-
gional outages. Worse, proprietary extensions—model-specific
prompt syntax, IDE plugins that talk only to one end-
point—create deep integration locks. When a competitor re-
leases a superior model or your procurement team negotiates
a better contract elsewhere, migration becomes prohibitively
expensive. Vibe coders may mitigate it by adopting tools and
abstractions that support multiple backends- an open prompt
runner like Continue, a self-hosted inference proxy, or an
internal API that your scripts call. Keep prompts vendor-
neutral- avoid magic tokens or proprietary function-calling
formats unless encapsulated behind translation layers. Vibe
coders should document fallback procedures—how to spin up
a local Ollama model if cloud access fails. This preparedness
reduces downtime and empowers purchasing leverage.

10) Preventing Human Expertise Atrophy: Relying uncrit-
ically on Al-generated code erodes the team’s collective mas-
tery of core algorithms, protocols, and security best practices.
This gap becomes acute during production incidents- when
the system behaves unexpectedly—beyond the AI’s training
data—engineers must interpret logs, analyze distributed trans-
action flows, and develop urgent hotfixes under pressure, all
of which demand deep domain knowledge. To counteract skill
decay, embed deliberate practice into the workflow. Foster a
rigorous code-review culture in which each reviewer must
justify why an Al-suggested approach is sound or flawed.
Institute periodic “manual weeks,” as described earlier, dur-
ing which no Al assistance is allowed. Vibe coders should

36

organize lunch-and-learn workshops to dissect particularly
insightful or problematic Al contributions and compare them
against human-crafted alternatives. Vibe coders should track
expertise through regular assessments—such as quizzes on
database isolation levels or TLS handshake mechanics—to
gauge and reinforce technical fluency. For a concise summary
of recommended and discouraged behaviors when vibe coding,
see Table XII.

D. Difference With Traditional Coding

Vibe coding marks a fundamental shift from traditional soft-
ware development by replacing manual code authorship with
prompt-driven Al orchestration. This section contrasts the two
paradigms across critical dimensions—including authoring
workflows, debugging practices, project coordination, security,
and developer roles—highlighting how large language models
alter the nature of engineering tasks, accelerate innovation,
and democratize participation [218], [219]. While vibe coding
boosts productivity and lowers entry barriers, it also introduces
new challenges in context management, code validation, and
architectural oversight that demand disciplined workflows and
hybrid human—AI collaboration [220], [221].

1) Authoring Workflow: In traditional software develop-
ment, the authoring workflow is inherently manual and de-
liberate: developers translate requirements into code through
an explicit sequence of design, implementation, and testing
phases. This process demands a robust mental model of
programming languages, APIs, and software architectures,
with the programmer actively managing control flow, data
structures, and error conditions. Each line of code reflects a
conscious decision about algorithmic efficiency, memory man-
agement, and maintainability. Conversely, in vibe coding, the
bulk of syntactic and structural work is outsourced to a LLM.
The developer’s primary cognitive activity shifts from writing
code to crafting effective prompts, iteratively refining natural-
language instructions to guide the AI’s generation. Rather than
explicitly instantiating classes or writing loops, the vibe coder
articulates high-level directives—“Create a REST endpoint for
user authentication using JSON Web Tokens and connect it
to the existing PostgreSQL schema”—and trusts the LLM to
compose the requisite boilerplate, database queries, and error
handlers. This reconception of responsibilities can dramati-
cally reduce boilerplate fatigue and accelerate prototyping,
but it requires new skills in prompt engineering, context
management, and LLM behavior mitigation. The vibe coder
must judiciously segment tasks, chain prompts to avoid context
overload, and intervene when the Al drifts or hallucinates.

2) Debugging and Validation: In conventional coding
paradigms, debugging is a hands-on endeavor- developers
leverage compiler diagnostics, runtime tracebacks, and step-
through debugging tools to isolate faults, stepping through exe-
cution paths to examine variable states and call stacks. Quality
assurance is further enforced through unit tests, integration
tests, and static analysis, with CI/CD pipelines automatically
validating builds against explicit expectations. By contrast,
vibe coding introduces a distinct error-detection lifecycle
mediated by the LLM itself. When the Al generates code that

TABLE XII: Do’s vs. Don’ts for Practising Vibe Coding Effectively

37

Aspect

Do - Best-practice action

Don’t — Counter-productive action

Context Seeding

Begin every session with a concise brief that expresses the business
goal, success criteria, hard constraints, and links to design docs or key
paths so the agent starts with an accurate mental model.

Assume the model can “figure it out,” or dump the entire repo without
constraints, leading it to hallucinate APIs, misuse patterns, and waste
tokens.

Prompt Versioning

Commit prompts, rule files, and system messages next to source code
so changes are peer-reviewed, traceable, and reproducible.

Let prompts live only in transient chat history or private notes, making
it impossible to audit how code was generated or why behaviour
changed.

Human Oversight

Treat the assistant like a junior dev: inspect every diff, rerun the test
suite, and require code-review sign-off before merging.

Auto-merge Al pull requests or paste raw completions straight to main
without tests, reviews, or security checks.

Rigorous CI / CD

Keep linters, SAST/DAST, mutation testing, licence scanners, contract
tests, and performance benchmarks in the pipeline; feed failures back
to the agent for focused fixes.

Disable failing stages “temporarily,” allowing vulnerabilities, regres-
sions, and licence violations to ship to production.

Controlled Autonomy

Run the agent in a sandbox with a tight allow-list for file edits and
shell commands; require confirmation for destructive ops or network
calls.

Turn on “always-approve” or give the agent unrestricted root access,
risking data loss, ransomware, or production outages.

Shared Prompt Library

Maintain a peer-reviewed, searchable library of prompt templates so
teams iterate consistently and newcomers ramp up quickly.

Let every developer improvise private prompts, causing style drift,
duplicated effort, and brittle ad-hoc incantations.

Context Minimisation

Provide only the slices of code, ADRs, OpenAPI specs, or design
docs truly required—using tools like Prompt Tower or Repomix—to
cut cost and protect secrets.

Paste whole repos or environment files into the prompt, ballooning
latency, spend, and the surface for data leakage.

Skill Maintenance

Schedule “Al-mute” katas or sprints where humans write, debug, and
optimise code unaided to keep algorithmic intuition and performance
tuning skills sharp.

Offload every task to the assistant, letting core competencies atrophy
and leaving the team helpless when the model is offline or hallucinat-

ing.

Vendor Neutrality

Route model calls through an abstraction layer (SDK, micro-service)
so vibe coders can hot-swap cloud, on-prem, or OSS checkpoints with
trivial config changes.

Hard-wire IDEs, CI jobs, and prompt syntax to a single proprietary
endpoint, locking the org into pricing, policy, and outage risk.

Dependency Vetting

Review each new package the agent proposes—check maintenance
health, CVEs, and licence fit—before adding it to the lock-file.

Blindly accept whatever libraries are imported, including typosquats,
abandonware, or GPL code that violates corporate policy.

Data Privacy

Keep proprietary code on-prem or in a private VPC; use client-
side RAG indexes and encrypted transport; redact secrets before any
external call.

Ship full source trees to public SaaS endpoints or paste customer data
in prompts, breaching NDAs and data-residency laws.

Explainability

Store generation metadata—model name, prompt hash, time stamp—in
commit messages; use agents that cite source docs and reasoning
traces.

Treat Al output as an infallible oracle, discarding provenance and
making future audits or bug forensics impossible.

Performance Optimisation

Profile Al-generated code with flame-graphs and memory tools; have
the agent refactor hotspots into vectorised or asynchronous paths.

Merge unprofiled suggestions that add N? loops, blocking I/0, or eager
DB queries that crater throughput.

Bias and Fairness Audits

Run static and dynamic tests that check for discriminatory rules, hard-
coded demographics, or biased defaults before release.

Assume the model is neutral; deploy recommendation or eligibility
logic without fairness checks, risking ethical and legal fallout.

Collaboration & Documen-
tation

Auto-generate ADRs, decision logs, and inline docs from prompts;
hold regular group walkthroughs of Al-derived patterns to preserve
shared understanding.

Let generated code land without rationale or docs, fracturing team
knowledge and hampering future maintenance.

Continuous Model Tuning

Apply LoRA or prefix-tuning on local corpora to teach project
conventions; cache embeddings to improve recall speed and relevance
over time.

Stick permanently to the vanilla checkpoint, forcing verbose prompts
to re-explain context and ignoring drift in coding standards.

fails to compile or produces incorrect behavior, the vibe coder
supplies error messages verbatim as prompts—Here is the
NullPointerException stack trace; please identify and correct
the source of the null reference in UserService”—and relies
on the model to propose fixes. This “error echo” technique
exploits the LLM’s training on debugging patterns, yet it
can lead to iterative loops of hallucinated fixes or misplaced
cursor adjustments if the underlying context is incomplete.
To guard against such drift, developers often embed testing
scaffold instructions in prompts— “write pytest cases covering
boundary conditions for this function, then fix any failing
assertions’—thereby anchoring Al outputs to verifiable as-
sertions. Automated linter and formatter integrations further
standardize code style and catch common mistakes before
human review.

3) Project Coordination: Traditional software projects rely
on explicit task management workflows—using ticketing sys-
tems like Jira or GitHub Issues—to decompose milestones
into epics, stories, and tasks. Human project managers and
scrum masters facilitate backlog grooming, sprint planning,
and inter-team synchronization, ensuring that dependencies
are resolved and deliverables adhere to specifications. Vibe
coding reimagines coordination through agentic orchestration-
within tools like Roo’s Orchestrator (Boomerang) Mode or
Claude Task Master, Al agents programmatically dissect high-

level project goals into a hierarchy of subtasks, each delegated
to specialized “modes” or Al modules tailored for architec-
ture design, code generation, or debugging. The orchestrator
Al monitors the lifecycle of each subtask, pausing parent
workflows, spawning isolated contexts for detailed work, and
then summarizing results for reintegration. This automated
delegation significantly accelerates complex, multi-stage pro-
cesses—such as end-to-end API development followed by
integration testing—by eliminating manual handoffs between
design, implementation, and validation phases. Nevertheless,
this requires stringent governance- developers configure auto-
approve policies to determine which subtasks can execute
without explicit consent, and they define command whitelists
to constrain terminal operations within safe boundaries.

4) Codebase Evolution: Traditional coding emphasizes
modularity, design patterns, and architectural integrity to facili-
tate long-term maintainability. Engineers author code with sep-
aration of concerns—layering business logic, data access, and
presentation—to ensure that each component can evolve inde-
pendently. Comprehensive documentation, interface contracts,
and code comments serve as guides for future contributors,
while version control histories record rationale behind major
refactors. In vibe coding, however, Al-generated code may
lack holistic architectural consistency unless explicitly guided.
The LLM can produce standalone modules or functions cor-

rectly, but it may not automatically enforce cross-cutting con-
cerns such as logging conventions, transaction management,
or backward compatibility. To mitigate this risk, developers
integrate contextual rule files—Markdown-based conventions
or Cursor/Aider rule engines—that instruct the Al on project-
wide standards. Additionally, indexing tools feed existing code
structures into the LLM’s context window, ensuring that new
code adheres to pre-established patterns and directory layouts.
Maintainability in vibe-coded projects thus emerges from an
interplay between Al’s generative capabilities and human-
defined guardrails, with developers periodically refactoring
Al-produced code to realign it with evolving architectural
paradigms.

5) Developer Roles: Conventional software development
values mastery of programming languages, frameworks, and
system internals; a seasoned engineer is expected to navi-
gate assembly-level performance tuning, memory profiling,
and low-level debugging. Roles such as DevOps engineer,
database administrator, and security specialist reflect deep
specialization in critical subsystems. Vibe coding, by contrast,
democratizes initial code production, allowing non-engineers
or junior developers to assemble working prototypes through
well-crafted prompts. However, this democratization shifts the
premium skill set toward prompt engineering, Al-agent orches-
tration, and context management. Developers evolve into Al
wranglers who design multi-agent workflows, fine-tune LLM
parameters (temperature, max tokens), and configure model-
calling protocols like MCP or SLOP for seamless tool integra-
tion. They also become custodians of project-wide rules and
conventions, embedding domain logic into LLM contexts to
steer generation. While deep technical expertise remains vital
for complex system design, security audits, and performance
optimization, the day-to-day execution of routine coding tasks
recedes behind the Al interface. Consequently, software teams
may bifurcate into product engineers, who rapidly prototype
features and iterate with Al assistance, and system architects,
who ensure scalability, reliability, and compliance through
manual oversight and specialized tooling. This emergent di-
vision echoes earlier splits between frontend/back-end and
system/application engineers, yet the boundary now centers
on Al-augmented versus low-level engineering competencies.
As LLMs become more capable, the highest-value contribu-
tions will derive from defining robust abstractions, enforcing
cross-system invariants, and innovating at the intersection of
business logic and Al-driven implementation.

6) Security in Code Generation: Traditional software de-
velopment enforces security and compliance through well-
established practices- manual code reviews, SAST/DAST, de-
pendency vulnerability scanning, and formal threat model-
ing. Developers adhere to secure coding standards—such as
OWASP’s Top Ten—and integrate policy-as-code tools like
Open Policy Agent into CI/CD pipelines. In contrast, vibe
coding’s Al-driven code synthesis raises unique challenges.
Since large language models generate code based on sta-
tistical patterns rather than formal specifications, they can
inadvertently introduce security flaws—such as SQL injection
vectors, insecure deserialization, or improper authentication
flows—if not carefully guided. Vibe coders must therefore

38

embed security requirements into prompts explicitly, instruct-
ing the Al to employ parameterized queries, validate user
inputs against strict schemas, and enforce least-privilege access
controls. Furthermore, generated code should immediately
undergo automated security scans: tools like Bandit for Python
or Semgrep for JavaScript can flag insecure idioms, while con-
tainerized sandboxing of Al outputs can prevent unintended
side effects on production environments. Auditors also need
to maintain traceability from prompt to code, ensuring that
compliance artifacts—such as evidence of data encryption or
audit-logging—are present and verifiable.

7) Integration with Development Toolchains: In conven-
tional development workflows, code is authored in IDEs or text
editors with built-in language servers, linters, and debuggers.
Version control (Git), build systems (e.g. Maven'?, Gradle''?,
Make!'!), and CI/CD platforms (e.g. Jenkins, GitHub Ac-
tions, GitLab CI) form a cohesive pipeline. Vibe coding,
however, layers Al agents and language models atop these
toolchains, requiring new integration paradigms. Instead of
typing code, developers issue prompts to LLMs via specialized
interfaces—such as Cursor Composer, Claude Code’s CLI,
or Aider’s REPL—and receive Al-generated commits directly
into the repository. These agentic tools support MCP to
invoke external data sources or services, seamlessly merging
manual and automated operations. The developer configures
agent permissions—using whitelists of allowed commands—to
ensure that Al operations like ‘npm install* or ‘docker build*
execute only with explicit consent. Task orchestration frame-
works (Boomerang Tasks, Claude Task Master) decompose
high-level requirements into discrete prompts, automatically
chaining code generation, test execution, and deployment
steps. Al assistants also annotate pull requests with natural-
language explanations of changes, embedding summaries of
prompt histories into commit messages.

8) Code Ownership: In a classic engineering team, code
ownership and collaboration adhere to clear conventions-
each module or service is owned by a defined team, and
code reviews—conducted via pull requests—ensure collec-
tive understanding and accountability. Documentation, design
documents, and code comments articulate architectural ra-
tionale, facilitating knowledge transfer. Vibe coding disrupts
this model by decentralizing code authorship; Al agents
generate substantial portions of the codebase, often based
on prompt sequences rather than direct human authorship.
Consequently, the traditional notion of “who wrote this code”
shifts to “who specified the prompt.” To maintain team align-
ment, organizations must adopt prompt versioning and record
prompt-response pairs alongside code commits, establishing
an audit trail of AI interactions. Collaboration workflows
integrate Al-assisted review- teammates can inspect generated
code in context of the original natural-language instruction,
using tools that highlight discrepancies between the prompt
and resulting code. Pairing sessions evolve into “prompt
pairing,” where two developers co-design prompts to guide

109https://maven.apache.org/
0nhttps://gradle.org/
https://www.make.com/en

the AI’s behavior. Moreover, teams define project-wide “vibe
coding conventions”’—stored in Markdown rule files or YAML
configurations—that the Al agent automatically consumes at
generation time, ensuring consistency in naming schemes,
error-handling patterns, and architectural styles.

9) Architectural Stability: Traditional code development
emphasizes architectural foresight- developers invest time in
defining system boundaries, selecting technology stacks, and
designing modules for long-term scalability and maintainabil-
ity before writing any production code. While this approach
fosters robust architectures, it can slow down initial proto-
typing and time-to-market. Vibe coding flips this trade-off
by dramatically accelerating the innovation phase: developers
can spin up working features in minutes by prompting Al
agents to scaffold entire microservices, Ul components, and
database schemas. This “fail-fast” model empowers rapid ex-
perimentation and iterative pivots, enabling product engineers
to validate hypotheses with minimal upfront design overhead.
However, the high velocity of Al-driven generation poses risks
to architectural coherence- ad hoc prompt sequences may yield
modules that conform to local requirements but lack global
consistency in error handling, dependency injection, or service
orchestration. To reconcile speed with stability, teams adopt
Design-First Prompting (DFP), where developers iteratively
refine architectural diagrams and system context in prompts
before invoking code generation. They also schedule regular
architectural review sprints, during which Al-generated code
is refactored into well-defined components, enforcing sepa-
ration of concerns and ensuring consistency with enterprise
integration patterns.

10) Automated Validation: In conventional development
lifecycles, Quality Assurance (QA) relies heavily on manual
test authoring, static and dynamic analysis, and meticulously
maintained regression suites. Engineers write unit tests, in-
tegration tests, and end-to-end scenarios using frameworks
like JUnit, PyTest, or Cypress, often spending significant time
crafting precise assertions and mocking external dependencies
to ensure deterministic outcomes. Vibe coding shifts much of
this workload onto large language models, which can generate
not only production code but also accompanying test cases
in response to targeted prompts. By instructing the Al to
“produce unit tests covering edge cases for this function”
or “generate integration tests for the RESTful endpoints de-
fined in OpenAPI format,” developers obtain a comprehensive
test harness within seconds. This paradigm accelerates test
coverage creation and fosters a test-driven approach with
minimal manual boilerplate. However, Al-generated tests can
sometimes reflect the model’s training bias—omitting corner
cases or relying on simplistic input combinations—so teams
must validate test correctness via mutation testing tools to
ensure that failing test assertions genuinely reflect erroneous
behavior. Continuous integration pipelines adapt by incorpo-
rating checks that compare Al-generated tests against manual
baselines, measuring code coverage metrics and employing
static analysis plugins (like SonarQube''> or CodeQL''?) to

2https://www.sonarsource.com/products/sonarqube/
3https://codeql.github.com/

39

detect vulnerabilities early. As Al agents evolve, they may
automatically update tests in response to code refactoring,
maintaining resilience against regression.

11) Role Evolution in Al-Augmented Development: Tra-
ditional programming careers emphasize proficiency in pro-
gramming languages, data structures, algorithms, and frame-
work ecosystems, with developers spending years honing their
mastery of syntax, design patterns, and tooling. In the era of
vibe coding, the requisite skillset shifts dramatically- rather
than meticulously writing each line of code, engineers become
prompt engineers and Al wranglers, refining natural-language
instructions to coax desired behaviors from large language
models. Expertise in prompt crafting—specifying context,
constraints, and desired output format—becomes as vital as
understanding language-specific idioms. Additionally, devel-
opers must possess strong system-design knowledge to provide
high-level architectural guidance that Al agents translate into
coherent microservice scaffolds or Ul component libraries.
Debugging also transforms: instead of stepping through code
in a debugger, engineers analyze Al-generated stack traces
and error messages, iteratively refining prompts or supplying
contextual hints to the model until the failure resolves. Fa-
miliarity with MCP servers, tool-calling standards, and API
integration patterns allows developers to seamlessly extend
Al capabilities by exposing custom data sources or computa-
tion tools. DevOps skills persist—container orchestration with
Kubernetes, infrastructure-as-code with Terraform, and CI/CD
pipelines remain essential—but now include configuring Al
agent permissions and integrating model output into automated
deployment pipelines. As a result, role definitions evolve-
“Al engineers” and “agent orchestration specialists” work
alongside traditional software engineers, focusing on meta-
development tasks such as prompt library maintenance, Al
workflow optimization, and continuous model fine-tuning.

12) Workflow Dynamics: In traditional software devel-
opment, workflows are typically structured around discrete
roles—frontend engineers, backend engineers, QA specialists,
DevOps operators—and rely on tightly managed source con-
trol practices such as feature branching, pull requests, and code
reviews. Teams convene around sprint planning, stand-ups,
and retrospectives, with well-defined handoffs between design,
development, and testing stages. Vibe coding, in contrast, in-
troduces a more fluid, Al-centric collaboration model in which
large language models function as autonomous contributors.
Developers articulate high-level goals or write minimal stories
in a Product Requirements Document (PRD), and the Al agent
generates code, tests, and documentation in an integrated loop.
Continuous integration pipelines adapt by invoking Al agents
via MCP calls to scaffold endpoints or Ul components, effec-
tively collapsing design and implementation phases. This shifts
human collaboration toward overseeing Al output, validating
architectural compliance, and refining prompts to drive the
AT’s next set of deliverables. Code review morphs into prompt
review- peer developers inspect the prompt specification and
Al-generated diffs for semantic correctness and adherence to
organizational style guides defined in configuration files (e.g.
.cursor/rules/). Communication becomes asynchronous and
Al-mediated; chat logs and prompt histories become the new

artifacts for collaboration, supplemented by PRDs and auto-
generated changelogs.

13) Long-Term Software Evolution: Conventional develop-
ment emphasizes code maintainability through design patterns,
SOLID principles, and modular architecture. Engineers invest
in code comments, documentation, and layered abstractions
to facilitate comprehension by future team members, and
refactoring is driven by metrics like cyclomatic complexity and
code coverage. In a vibe coding environment, Al agents gen-
erate large swaths of code rapidly based on natural language
prompts, but this speed can come at the expense of structural
clarity. Since developers often “Accept All” changes without
manually authoring each function, the resulting code may
lack consistent naming conventions, uniform error-handling
strategies, or well-defined interfaces. To mitigate this, robust
configuration systems—such as YAML or JSON-based rule
files—are used to inject organizational standards directly into
the agent’s context. Agents can be prompted to enforce lay-
ering by first defining domain models, then generating data
access layers, and finally creating service or controller classes,
preserving separation of concerns. Furthermore, continuous
integration pipelines include automated architecture analysis
tools like ArchUnit''* or Structure101'" to detect violations
of predefined module boundaries.

14) Compliance Considerations: 1In traditional coding
paradigms, security is embedded through threat modeling, se-
cure coding guidelines (such as OWASP Top Ten), and manual
code audits that scrutinize inputs, outputs, and data flows for
vulnerabilities like SQL injection or cross-site scripting. SAST
and Software Composition Analysis (SCA) tools are routinely
integrated into CI/CD pipelines to detect known vulnerabilities
in dependencies and enforce policy compliance. Vibe coding
introduces new challenges and opportunities- Al agents may
inadvertently generate insecure code patterns—hardcoded cre-
dentials, insufficient input validation, or uncontrolled deserial-
ization—if prompts do not explicitly specify security require-
ments. To counteract this, developers embed security protocols
into PRDs and prompt templates, instructing the model to
“validate all incoming JSON payloads against a schema” or
“encrypt sensitive fields using AES-256 before persistence.”
Post-generation, DAST tools such as OWASP ZAP''® or Burp
Suite!!” scan the running application, while Al-driven security
linters re-analyze the codebase to flag insecure constructs. On
the compliance front, legal and regulatory mandates—GDPR,
HIPAA, or PCI DSS—demand data handling rules that the
Al must respect. Configuring the Al to interface with a MCP
server that enforces data governance policies ensures that PII
is properly anonymized or encrypted. Audit trails become
critical- every Al-generated commit is tagged with metadata
including prompt version, model identifier, and timestamp,
forming a forensic record for compliance reviews.

15) Democratization of Software Development: The advent
of Al-driven “vibe coding” has dramatically lowered the
barrier to entry for software creation, ushering in an era where

U4https://www.archunit.org/
Shttps://www.sonarsource.com/structure101/
Ubhttps://www.zaproxy.org/
https://portswigger.net/burp

40

individuals lacking formal programming training can produce
functional applications. Traditionally, mastering a program-
ming language, associated frameworks, and development tools
required months or years of dedicated study; novices grappled
with syntax, debugging environments, build pipelines, and
version control before even tackling feature implementation.
Vibe coding inverts this paradigm by allowing users to express
requirements in plain English—via a conversational interface
or high-level prompt—and rely on large language models to
generate code, configure dependencies, and orchestrate build
scripts. Under the hood, these Al agents leverage pretrained
transformer architectures fine-tuned on vast code repositories,
combined with tool-calling protocols to invoke compilers,
package managers, or cloud APIs autonomously. This abstrac-
tion of low-level details empowers non-engineers—product
managers, designers, data analysts—to prototype user inter-
faces, data pipelines, or machine learning workflows without
writing a single line of boilerplate. Consequently, organi-
zations can embrace cross-functional “product engineers”
who ideate, implement, and test new features independently,
accelerating innovation cycles and reducing time-to-market.
Open source communities benefit as well- contributors can
submit prompt descriptions as issues, and bots convert them
into pull requests, democratizing contribution beyond those
proficient in a codebase. Table XIII shows the difference
between traditional coding and vibe coding.

VI. KEY CHALLENGES

Despite its speed and flexibility, vibe coding introduces crit-
ical challenges—including hallucinated code, maintainability
issues, compliance risks, and over-reliance on Al [222], [223].
This section outlines these concerns to ensure safe, consistent,
and scalable adoption of Al-assisted development [224], [225],
[226].

A. Model Hallucinations

Large language models frequently generate code that ap-
pears syntactically correct and semantically plausible, yet
harbors subtle errors or fabrications—an issue commonly
termed ‘“hallucination.” Because LLMs are trained to predict
token sequences rather than validate executions, they may
invent non-existent API endpoints, misapply cryptographic
primitives like symmetric key management or nonce gener-
ation, or neglect essential input sanitization routines [227].
Such fabricated constructs not only undermine software re-
liability but can introduce exploitable vulnerabilities—SQL
injection through unparameterized queries, buffer overflows
in unchecked loops, or insecure deserialization of untrusted
data structures—without raising immediate compiler or linter
warnings. Moreover, adversarially crafted prompts can coax
these models into revealing proprietary logic or embedding
malicious payloads, effectively weaponizing the Al itself. To
counteract these risks, development pipelines must integrate
both SAST and dynamic analysis tools that fuzz Al-generated
artifacts, exercising edge cases and protocol boundaries to un-
cover latent faults. Provenance tracking—attaching metadata
that records the model version, prompt context, and confidence

41

TABLE XIII: Comparison of Traditional Coding and Vibe Coding

Aspect Traditional Coding Vibe Coding
Authoring Developers manually decompose requirements into design, write each line | Programmers articulate high-level intents via natural-language prompts, and
Workflow of code with explicit control-flow and data-structure decisions, and manage LLMs generate boilerplate, modules, and tests. The primary mental effort

build/test cycles. High cognitive load is placed on language syntax, API
usage, and architecture patterns.

shifts to prompt engineering, context management, and orchestrating Al-
driven subtasks, with the Al handling repetitive coding chores.

Error Debugging

Engineers use compilers, debuggers, stack traces, and step-through de-
bugging to locate faults. They write and maintain unit/integration tests in
frameworks and rely on CI pipelines for regression validation.

The AI model itself proposes fixes- developers feed raw error messages
back to the LLM, and the model iteratively refines code. Automated tests
and linters are invoked via prompts to anchor fixes, but human oversight
is required to validate that Al-generated patches truly resolve underlying
issues.

Project
Coordination

Human project managers and scrum masters break down epics into user
stories and tasks in tools like Jira or GitHub Issues, coordinate sprints, and
track dependencies through manual status updates, meetings, and reports.

Agentic orchestrators programmatically split high-level goals into Al-
delegated subtasks, spawn isolated contexts per mode (design, code, debug),
and auto-summarize results back into the main workflow. Progress is
tracked via prompt logs and Al task summaries rather than manual tickets.

Codebase Maintain-
ability

Emphasis on modular architecture, design patterns, clear interfaces, and
human-written documentation. Refactoring and architectural alignment are
driven by code reviews and style-guide enforcement.

Al generates standalone components that may lack global consistency un-
less guided by contextual rule files or indexed code prompts. Maintainability
emerges from embedding project-wide conventions into prompts, using
tools like RepoPrompt, and periodic human-led refactoring sprints to realign
Al outputs with architectural standards.

Skill Requirements

Engineers require deep expertise in programming languages, algorithms,
performance tuning, and system internals. Roles include frontend/backend
developers, DevOps, security specialists, etc.

Core competencies shift toward prompt engineering, Al-agent orchestration,
and context management. Teams bifurcate into “product engineers” who
rapidly prototype features via Al and “system architects” who enforce
scalability, security, and performance through manual oversight and model-
calling integrations (MCP/SLOP).

Security

Security is enforced through threat modeling, secure coding standards,
SAST/DAST scans, and manual code audits. Regulatory compliance is
documented by human-authored policies in code and pipelines.

Al-generated code must be steered via security-aware prompts, then sub-
jected to automated vulnerability scanners (Semgrep, Bandit). Compliance
artifacts (encryption, audit logs) are injected via prompts and verified
through CI policies. Prompt provenance and metadata serve as audit trails.

Development
Toolchain
Integration

Code is written in IDEs/text editors with language servers, build tools
(Maven, Gradle), and CI/CD platforms. Developers invoke compilers,
package managers, and deployment scripts manually or via pipelines.

Al agents interact directly with Git repositories and build tools via agentic
CLIs. MCP enables Al to call external tools (lint, test, cloud APIs)
seamlessly. Developers configure whitelists for safe command execution,
and Al-driven commits are subject to standard CI validation.

Code Ownership

Ownership is defined by code ownership conventions; pull-request reviews
ensure collective understanding. Documentation and design docs articulate
architectural rationale.

Authorship shifts to “who designed the prompt.” Teams version prompts
alongside code, review both prompt and generated diff, and enforce “vibe
coding conventions” stored in rule files. Prompt histories become part of
the audit trail, and “prompt pairing” replaces traditional pair-programming
to guide AI behavior collaboratively.

Innovation Velocity

Up-front architectural design slows prototyping but ensures long-term
scalability. New features follow defined interfaces and integration patterns.

Rapid feature scaffolding via Al enables “fail-fast” experimentation, col-
lapsing design and implementation. To preserve stability, developers use
design-first prompting schedule architectural review sprints, and feed inter-
face contracts into the LLM to maintain consistency across modules.

Automated Valida-
tion

QA relies on manual test authoring (unit, integration, end-to-end), code
coverage metrics, and regression suites. Engineers invest significant time
in crafting reliable test scenarios and mocking strategies.

LLMs generate tests on demand (“write pytest cases for boundary con-
ditions”), drastically reducing boilerplate. Mutation testing ensures test
robustness, and static analysis plugins integrate with CI to catch edge cases.
QA engineers review Al-derived assertions to eliminate flaky or incomplete
tests, blending automated scaffolding with targeted human validation.

Democratization of
Software Develop-
ment

Significant learning curve for novices; proficiency with syntax, tooling,
and version control is a barrier to entry. Non-engineers seldom contribute
directly to code.

By abstracting syntax and build details, vibe coding empowers non-
programmers—product managers, designers, analysts—to prototype ap-
plications via natural-language prompts. Open source contributions can
originate as prompt issues, with bots translating them into code, thereby
broadening participation and redefining who can shape software products
and solutions.

scores for each snippet—enables auditors to trace back suspi-
cious code to its origin and rapidly revoke or patch problematic
segments. Secure-by-design fine-tuning, which incorporates
curated vulnerability datasets into the model’s training loop,
can reinforce safe coding patterns, while adversarial robust-
ness techniques—such as input perturbation and randomized
response testing—stress-test model outputs under manipulated
prompts. Policy-based reinforcement learning frameworks can
further constrain generation behaviors, imposing enterprise
security policies at inference time and rejecting code that fails
compliance checks.

B. Code Quality

In many Al-augmented development scenarios, the drive to
produce working code snippets rapidly can eclipse long-term
maintainability considerations, fostering an accumulation of
technical debt that impedes future evolution. Generated func-
tions often consist of verbose, deeply nested control structures,
inconsistent identifier naming, and duplicated boilerplate that

contravenes the Don’t Repeat Yourself (DRY) principle. When
models lack awareness of a project’s existing abstraction layers
or architectural style guides—be it layered MVC, hexagonal
ports-and-adapters, or event-driven microservices—they may
generate modules that fit narrowly scoped tasks but fail to inte-
grate cleanly into the broader codebase. Absent accompanying
unit tests, integration tests, or inline documentation, these
Al-produced artifacts hinder traceability and slow debugging,
leaving teams with an expanding backlog of poorly understood
code segments [228], [229]. To mitigate this, organizations
must embed Al outputs within established quality assurance
pipelines- static analysis tools such as ESLint, SonarQube,
or Pylint enforce style and complexity thresholds; cyclomatic
complexity analyzers flag functions exceeding maintainable
size; and architectural conformance engines detect deviations
from design patterns. Automated refactoring utilities—such
as IntelliJ’s structural search-and-replace or Python’s Rope
library—can consolidate duplicated logic into shared utilities,
while code-smell detectors identify anti-patterns like long

parameter lists or tight coupling.

C. Skill-Atrophy

The convenience of Al-driven code generation presents
a double-edged sword- while it accelerates routine tasks,
overreliance risks eroding developers’ core competencies.
Junior engineers may bypass mastering fundamental com-
puter science concepts—data structure selection, algorithmic
complexity analysis, memory management, Or concurrency
control—simply by accepting model-provided implementa-
tions. This atrophy of essential skills compromises an engi-
neer’s ability to optimize performance, diagnose deadlocks,
or architect secure, scalable systems [230]. In academic and
professional training environments, the ubiquity of Al assis-
tants mandates a recalibration of evaluation strategies- tradi-
tional assignments requiring pencil-and-paper algorithm de-
sign, manual code tracing exercises, and live coding interviews
must be complemented by assessments that verify genuine
comprehension rather than mere syntactic replication. Accred-
iting bodies could adopt practical examinations emphasizing
whiteboard problem solving and manual refactoring of Al-
generated code to ensure that graduates internalize program-
ming paradigms rather than outsource intellectual effort. Cog-
nitive apprenticeship models—wherein instructors gradually
fade scaffolding and compel students to reconstruct algorithms
from first principles—can reinforce conceptual mastery and
prevent dependency on Al scaffolding. Professional develop-
ment programs should integrate “Al-free sprints,” requiring
engineers to write complex modules without model assistance,
preserving craftsmanship in critical areas.

D. Scalability Issues

In large organizations where multiple developers deploy
Al coding assistants concurrently, divergent code generation
behaviors can fracture architectural cohesion, leading to inte-
gration challenges that undermine scalability. Without shared
governance, Al tools may yield modules with mismatched
interface contracts, inconsistent error-handling idioms, and
disparate configuration conventions, complicating merges in
a monorepo or microservices environment. By optimizing for
localized correctness—passing unit tests or satisfying immedi-
ate prompt criteria—models may overlook system-wide con-
cerns such as service orchestration, circuit-breaker resilience,
distributed tracing instrumentation, and cross-service schema
compatibility. These misalignments compound as each newly
generated component drifts further from enterprise architecture
blueprints, precipitating “integration hell” where automated
builds fail unpredictably or runtime behaviors diverge across
staging and production clusters. Addressing this challenge
requires a robust layer of governance embedded in CI/CD
pipelines- automated ADR validation, policy-as-code checks
that enforce Domain-Driven Design (DDD) boundaries, and
consumer-driven contract testing through tools like Pact to
verify inter-service agreements. Shared prompt libraries and
template repositories, curated by lead architects, can guide Al
assistants toward consistent patterns, while integrated linters
and static architectural conformance tools highlight deviations
before merge.

42

E. Regulatory Concerns

Al coding assistants trained on public and open-source
repositories risk inadvertently reproducing code snippets gov-
erned by restrictive licenses—GPL, AGPL, or Creative Com-
mons variants—potentially exposing organizations to license-
incompatibility issues and intellectual property infringement.
In highly regulated sectors such as finance, healthcare, or
aerospace (DO-178C''8), Al-generated software must ad-
here to exacting standards and undergo formal verifica-
tion—activities for which unvetted model outputs may be
ill-suited. Furthermore, data residency and privacy regula-
tions—GDPR in Europe, CCPA in California—impose strict
constraints on the transmission of proprietary code snippets
to cloud-hosted inference APIs, raising concerns about un-
intended code exfiltration across borders. To navigate these
complexities, teams must integrate license-scanning solutions
such as FOSSA or Black Duck within the AI generation
pipeline, automatically identifying and excluding code frag-
ments subject to incompatible licenses. Policy-as-code frame-
works, implemented via Open Policy Agent or similar tools,
can enforce organizational compliance rules before merging
Al-derived artifacts. Adopting federated or on-premises Al de-
ployments ensures that sensitive code never leaves controlled
environments, respecting data localization requirements. Le-
gal and compliance officers must audit Al outputs through
Software Bill of Materials (SBOM)'!® management and con-
tinuous compliance verification integrated into CI workflows.
Embedding ISO 27001 information security management and
IEC 6230420 medical device software standards into Al gov-
ernance processes provides a structured approach to achieving
regulatory assurance.

F Lack of Standardized Evaluation Metrics

The absence of universally adopted benchmarks for Al-
assisted code generation impedes objective comparison of
tools and obscures genuine progress in the field. Traditional
software quality metrics—cyclomatic complexity, code cov-
erage, static analysis warning counts—capture only superfi-
cial characteristics and fail to assess semantic correctness,
architectural conformance, or security robustness inherent in
Al outputs. Equally, developer-centric factors—cognitive load,
trust calibration, and overall user satisfaction—remain largely
qualitative, unpublished, and non-comparable across studies.
To address this gap, the community must develop multidi-
mensional evaluation frameworks that blend automated code
assessments with empirical usability research. Building upon
foundational datasets like HumanEval'?', CodeXGLUE!?2,
and ETH Py150'?, these frameworks should integrate ad-
vanced metrics such as CodeBLEU for structural similarity,
functional correctness scores derived from domain-specific
test suites, and architectural adherence indicators measured by
design pattern detectors.

8https://en.wikipedia.org/wiki/DO-178C
9https://www.cisa.gov/sbom
20https://www.iso.org/standard/38421 html

121 https://paperswithcode.com/dataset/humaneval
122https://github.com/microsoft/CodeXGLUE
123nttps://github.com/google-research-datasets/eth_py150_open

G. Knowledge Fragmentation

While Al coding assistants can speed individual productiv-
ity, they also risk fracturing shared understanding of system
architecture and algorithmic logic, exacerbating knowledge
silos. When critical components are auto-generated, develop-
ers may lack insight into the rationale behind control-flow
decisions, data transformation pipelines, or domain-specific
heuristics embedded in the code, undermining collective code
ownership. Generated documentation often remains generic,
failing to capture the contextual intent of architectural patterns
or business rules, which impedes effective peer review and
on-boarding of new team members [231]. To counteract this
fragmentation, teams must institutionalize collaborative rituals
that integrate Al into the software development lifecycle- live
“Al-pairing” sessions where developers critique and co-edit
model suggestions in real time; shared prompt-library mainte-
nance workflows that treat prompt configurations as first-class
artifacts subject to version control; and regular collective code
walkthroughs that surface Al-derived patterns for group dis-
cussion. Embedding provenance metadata—capturing model
version, prompt context, and confidence scores—directly into
version control commits enables traceability of Al contribu-
tions and highlights sections requiring human review.

H. Model Explainability

The neural architectures underlying modern LLMs function
as opaque black boxes, making it challenging to discern how
particular prompts yield specific code outputs or architec-
tural recommendations. Without interpretability, developers
cannot verify whether suggested routines adhere to perfor-
mance requirements, security policies, or style conventions,
undermining trust and complicating compliance audits in reg-
ulated environments. Techniques from explainable Al—such
as attention-weight visualization, concept activation vectors,
and local surrogate models (e.g. LIME!>*, SHAP'?®)—offer
a starting point but require adaptation for code synthesis
contexts. Attention maps can highlight which input tokens
or prompt fragments the model prioritized when generating
a function, yet they do not inherently reveal the contribution
of training examples or architecture graphs. Symbolic prove-
nance tracking—embedding tags that map generated code
segments back to representative training snippets or external
documentation references—can illuminate the lineage of each
suggestion. Counterfactual explanations, showing how altering
prompt wording or context examples changes the output,
further clarify model behavior.

1. Ethical Biases in Generated Code

Large language models trained on vast corpora of human-
authored code inherit the biases, shortcuts, and insecure
patterns present in their training data. For instance, legacy
repositories may contain hardcoded credentials, permissive
access controls, or discriminatory algorithms—biases which
Al assistants can inadvertently propagate or even amplify. In

24nttps://github.com/marcotcr/lime
125https://shap.readthedocs.io/

43

applications such as resource allocation, loan underwriting, or
hiring systems, such biases can manifest as unfair treatment
of protected groups, leading to legal and ethical repercussions
[232]. Addressing these challenges entails embedding bias-
detection pipelines into the code generation process, applying
adversarial tests that surface discriminatory branching logic
or unequal default parameters. During fine-tuning, integrating
counterfactual fairness constraints can steer model outputs
away from biased heuristics by balancing training examples
across demographic axes. Diverse, representative training cor-
pora must be curated to ensure that the Al learns inclusive
design patterns and robust input validation routines. Ethical
guidelines—such as those articulated in the IEEE Ethically
Aligned Design framework—should inform prompt engineer-
ing, ensuring that Al suggestions reflect principles of fairness,
accountability, and transparency.

J. Resource Consumption

While Al-assisted code generation can accelerate develop-
ment, it may also introduce inefficient constructs—redundant
nested loops, excessive memory allocations, or blocking 1/0O
operations—that degrade runtime performance and inflate re-
source utilization. In latency-sensitive systems such as real-
time analytics or interactive web services, these inefficien-
cies can breach Service-Level Agreements (SLAs), nega-
tively impacting user experience. Furthermore, the energy
footprint of cloud-based inference—particularly when large
models are invoked frequently—can rival or exceed the savings
from reduced developer hours, raising sustainability concerns.
Mitigating these overheads requires integrating performance
profiling tools, such as flame graphs and memory-heap an-
alyzers, into the Al feedback loop so that generated code
is automatically annotated with hotspots and optimization
recommendations. Al assistants can leverage static analysis
to suggest vectorized operations (e.g. NumPy broadcasting'?
instead of Python loops) or asynchronous frameworks (e.g.
asyncio'?’, reactive streams'?®) to improve throughput.

K. Dependency Vulnerabilities

Al coding assistants, when generating import statements
or recommending third-party libraries, may inadvertently in-
troduce dependencies on outdated, unmaintained, or even
malicious packages, exacerbating software supply-chain risks.
The dynamic nature of Al-inferred imports complicates tradi-
tional auditing processes- developers might overlook transient
dependencies hidden several layers deep, leaving their code
vulnerable to trojanized packages or dependency confusion
attacks. To mitigate these hazards, Al-augmented workflows
must integrate automated software composition analysis (SCA)
tools—such as OWASP Dependency-Check'?’, Snyk'3°, or
Sonatype Nexus'3'—that scan Al-suggested dependencies

126https://mumpy.org/doc/stable/user/basics.broadcasting.html
127https://docs.python.org/3/library/asyncio.html
128https://www.reactive-streams.org/
129https://owasp.org/www-project-dependency-check/
B0nttps://snyk.io/

131 https://help.sonatype.com/en/sonatype-nexus-repository.html

against known vulnerability databases and enforce semantic
versioning policies. Curated internal registries or proxy repos-
itories can gate external package access, ensuring that only
pre-approved, signed artifacts are consumed. Compliance with
Supply-chain Levels for Software Artifacts (SLSA) certifi-
cation adds cryptographic verification of build provenance,
while reproducible build frameworks guarantee that generated
artifacts match audited source code.

L. Proprietary Code Leakage

When developers leverage cloud-hosted Al inference APIs,
private source code and sensitive business logic are transmitted
beyond the organization’s firewalls, risking confidentiality
breaches and intellectual property leakage. Moreover, large
language models trained on public datasets may inadvertently
regenerate proprietary algorithms when queried by different
tenants, compounding data exposure concerns [233]. To safe-
guard privacy, enterprises must adopt on-premises or private-
cloud AI deployments within strict network boundaries, en-
suring that code context remains within controlled infrastruc-
ture. Encryption-at-rest and TLS-encrypted channels protect
code during transmission and storage, while stringent role-
based access controls prevent unauthorized prompt or response
retrieval. Techniques such as differential privacy—adding cal-
ibrated noise to prompt payloads—can obscure sensitive pat-
terns but may degrade generation fidelity; federated learning
architectures offer an alternative by keeping raw data localized
while aggregating model updates centrally. Homomorphic en-
cryption, though computationally intensive, enables encrypted
inference without revealing plaintext code [234].

M. Erosion of Trust

Excessive dependence on Al-generated suggestions can
erode developers’ critical thinking and problem-solving skills,
fostering a passive acceptance of model outputs even when
they harbour semantic errors or security flaws. Over time,
this complacency weakens confidence in one’s own ability
to architect solutions, debug complex behaviors, or identify
performance regressions, ultimately diminishing the engineer’s
role to that of an orchestrator of Al outputs rather than
an active creator. To counterbalance this trend, teams must
cultivate a “human-in-the-loop” ethos, where AI functions
as a supportive partner rather than an authoritative source
[235]. Mandatory manual code reviews, paired-programming
sessions conducted without Al assistance, and alternating “Al-
free” development sprints help maintain sharp analytical skills.
Enforcing test-driven development practices ensures that every
Al-generated snippet is validated against human-authored tests
before integration. Regular “Al post-mortems,” in which teams
analyze instances of flawed suggestions, reinforce awareness
of model limitations and edge-case failures.

N. Ecosystem Fragmentation

The current landscape of Al coding platforms is highly
fragmented, with each vendor offering proprietary APIs,

44

integration hooks, prompt syntaxes, and extension ecosys-
tems. Relying heavily on a single provider introduces lock-
in risks- migrating to an alternative model often requires
extensive rewrites of prompt libraries, reconfiguration of
CI/CD pipelines, and retraining of development teams on new
tooling conventions. This fragmentation stifles portability and
agility, as organizations must weigh the cost of switching
against the benefits of improved inference capabilities. To
mitigate lock-in, open standards for Al-assisted development
are urgently needed- interoperable prompt definition formats
(e.g. a JSON-Prompt schema'3?), pluggable inference back-
ends that can swap between local and cloud models seam-
lessly, and unified authentication protocols such as OAuth2
or OpenID Connect for model access. Until these standards
mature, engineering architecture should incorporate abstrac-
tion layers—microservice-style Al orchestration services that
encapsulate prompt execution behind stable APIs—allowing
the underlying inference engine to evolve independently.

VII. FUTURE DIRECTIONS

As vibe coding becomes an increasingly dominant paradigm
in software development, future advancements must evolve
beyond basic code generation to address its deeper cog-
nitive, organizational, and infrastructural implications. This
section explores emerging directions that can refine and extend
the capabilities of vibe coding—ranging from standardized
evaluation frameworks and personalized prompting strategies
to adaptive multi-agent systems, secure-by-design generation,
and education platforms tailored to Al-augmented develop-
ment.

A. Standardized Evaluation Frameworks

The rapid proliferation of Al-assisted development plat-
forms has outpaced the establishment of rigorous, consensus-
driven evaluation methodologies, leaving practitioners with-
out reliable benchmarks to assess tool efficacy, safety, and
maintainability [236]. A comprehensive evaluation framework
must therefore integrate multiple quantitative and qualitative
dimensions- functional correctness measured through auto-
mated test-suite pass rates and mutation testing; architec-
tural fidelity assessed via pattern recognition engines that
verify conformance to established design paradigms such as
hexagonal or microkernel architectures; code quality metrics
including cyclomatic complexity and code duplication indices
to predict maintainability; security resilience evaluated by
injecting known vulnerability archetypes and measuring the
success of static and dynamic analysis tools in detecting
them; and developer-centric metrics like perceived usefulness
and mental workload, captured using validated instruments
such as NASA Task Load Index (NASA-TLX)'3* and System
Usability Scale (SUS) surveys'3*. Extending extant corpora
through the inclusion of industry-scale microservices repos-
itories, domain-specific libraries (e.g. ROS!35 for robotics,

132https://json-schema.org/learn/getting-started-step-by-step

133 https://humansystems.arc.nasa.gov/groups/tix/downloads/TLXScale.pdf
B34https://en. wikipedia.org/wiki/System_usability_scale
35https://www.ros.org/

Hibernate'3¢ for Java persistence), and cross-language projects
will produce a more representative benchmark suite. Crucially,
longitudinal tracking of Al-generated code over successive
maintenance cycles must quantify technical debt accrual and
refactoring frequency, thereby elucidating the long-term cost
implications of automated code generation. To foster trans-
parency and reproducibility, reporting standards analogous to
medical research protocols should mandate the disclosure of
dataset provenance, evaluation criteria, statistical significance
thresholds, and tool configurations.

B. Human-AlI Interaction Models

Maximizing the productivity gains promised by Al coding
assistants necessitates an empirical understanding of how
developers interact with these tools within real-world work-
flows, a challenge that can only be addressed through rig-
orous Human—Computer Interaction (HCI) research. Con-
trolled user studies should quantify core performance indi-
cators—including task completion time, error frequency, and
mental workload as assessed while also evaluating trust cal-
ibration through validated trust-in-automation questionnaires.
Employing eye-tracking equipment and think-aloud protocols
will surface nuanced insights into developers’ attention al-
location, decision-making heuristics, and the cognitive pro-
cesses underpinning acceptance or rejection of Al-generated
code. A/B testing of interface designs—contrasting inline code
suggestions against side-pane “agent” dialogues, chat-based
prompts versus menu-driven command palettes—can reveal
the interaction metaphors that minimize interruptions and
maximize situational awareness. Anchoring this research in
established theoretical frameworks from CSCW and HCI, such
as Norman’s Seven Stages of Action, will guide the creation of
feedback loops that transparently convey Al confidence scores,
provenance metadata, and alternative solution paths. Longi-
tudinal field deployments, combined with analytics pipelines
capturing situational metrics, will inform best practices for em-
bedding Al capabilities within IDEs like VS Code, IntelliJ'?’,
and Emacs'®.

C. Adaptive Agents

Contemporary Al coding assistants largely operate as static
engines that treat every developer query identically, ignoring
the rich tapestry of individual coding conventions, domain
expertise, and organizational practices. The next frontier lies
in creating adaptive agents that continuously calibrate their
suggestions to reflect each developer’s unique “vibe,” drawing
upon implicit behavioral signals—such as the rate at which
suggestions are accepted or edited, the depth of subsequent
manual modifications, and the time elapsed between genera-
tions and edits—and explicit preference data elicited through
succinct in-IDE surveys. By framing suggestion ranking and
parameter tuning as a contextual bandit problem, agents
can employ Reinforcement Learning with Human Feedback

136https://hibernate.org/orm/
37https://www.jetbrains.com/idea/
38https://www.gnu.org/s/emacs/

45

(RLHF)[237] to optimize for user-satisfaction rewards. Inte-
gration of project-specific artifacts—style guides encoded in
EditorConﬁg139, ADRs stored in version control, and custom
lint rules—into the agent’s memory enables context-aware
tailoring that respects both personal taste and institutional
constraints. Interactive personalization controls within the IDE
can expose sliders for verbosity, formality, or novelty, empow-
ering developers to shift the agent’s default behavior according
to task requirements—ranging from boilerplate generation to
critical security overlays.

D. Neuroergonomic Programming Interfaces

Conventional text-centric IDEs, reliant on keyboard and
mouse inputs, impose both cognitive and physical strain
that can disrupt developer flow and contribute to repet-
itive strain injuries. By harnessing multimodal interaction
paradigms—integrating voice recognition for high-level com-
mands, pen-based annotation for on-screen architecture dia-
grams, and gesture controls for common refactoring opera-
tions—future interfaces can distribute cognitive load across
multiple sensory channels. Neuroergonomic [238] research
suggests that monitoring real-time physiological signals, such
as EEG-derived workload indices or heart-rate variability
correlated with stress, can enable dynamic adjustment of Al
assistance- suppressing noncritical notifications during deep
focus (i.e. “flow”) and escalating suggestions or guidance
when indicators of mental fatigue emerge. Programmable hap-
tic feedback integrated into ergonomic keyboards could con-
vey compile errors or code smells through subtle vibrations,
minimizing visual distractions. Gaze-aware context switching
systems, leveraging eye-tracking hardware, can allow devel-
opers to “nudge” agents with glance-based cues, prompt-
ing deeper code introspection or on-demand documentation
retrieval. Standardizing multimodal APIs across major IDE
platforms and conducting large-scale longitudinal field studies
will be critical to assess the ergonomic benefits, performance
gains, and well-being impacts of these interfaces.

E. “Vibe-Agile” DevOps

As Al coding tools mature, software development paradigms
will evolve to integrate intelligent agents directly into estab-
lished process frameworks, giving rise to hybrid methodolo-
gies such as “Vibe-Agile.” In this approach, Al agents assume
active roles across the Scrum lifecycle- automated backlog
refinement leverages natural-language processing on issue
trackers and log data to draft user-story templates, while sprint-
planning AI modules estimate story points using historical
velocity analytics and propose acceptance criteria aligned with
performance metrics. Daily stand-up “bots” can synthesize
CI/CD pipeline statuses—summarizing build success rates,
test coverage regressions, and deployment anomalies—so that
teams maintain a unified situational awareness. Extending
this concept further, “DevSecOpsSmart” pipelines embed Al-
driven code generation, static and dynamic security analysis,

139nttp://editorconfig.org/

compliance verification, and automated deployment orchestra-
tion into a seamless flow. Formalizing these practices requires
articulating new process patterns that balance Al autonomy
with human oversight—defining responsibilities for Al roles
such as “Al Product Owner” who curates prioritized backlog
items, “Al Tester” who generates and executes validation
suites, and “Al Release Manager” who orchestrates rollout
strategies.

F. Personalized Prompt Optimization Techniques

Despite the power of large language models, prompt en-
gineering remains a largely artisanal practice, with subtle
changes in wording, context framing, and example selec-
tion dramatically affecting code-generation quality. To ele-
vate prompting to a systematic discipline, researchers can
treat prompt construction as a hyperparameter optimiza-
tion problem, applying meta-learning and Bayesian optimiza-
tion algorithms—such as Tree-structured Parzen Estimators
(TPE)[239]—to iteratively refine prompt templates for re-
current tasks like API integration or database schema scaf-
folding. By defining objective functions tied to validation
suite pass rates or style-conformance metrics, automated
search can converge on phrasings and context windows that
consistently maximize performance. Embedding vector aug-
mentation strategies—incorporating historical successful code
snippets, project metadata, and domain glossaries into the
prompt context—reduces model hallucinations and enhances
relevance.

G. Continuous Model Fine-Tuning in IDEs

Rather than relying on periodic, monolithic updates deliv-
ered by external providers, next-generation development envi-
ronments should embed mechanisms for real-time, incremental
model adaptation using local code artifacts as fine-tuning
data. Parameter-efficient techniques such as Low-Rank Adap-
tation (LoRA) and prefix-tuning enable the construction of
lightweight “micro-models” that encapsulate project-specific
conventions, internal APIs, and preferred library versions
without retraining the entire base network [240], [241]. These
fine-tuned layers can be stacked atop the core model, allowing
rapid context switching between projects while conserving
compute resources and mitigating latency. Automated trig-
gers—such as the merging of a new architectural decision
record, addition of custom lint rules, or detection of emerging
anti-patterns—could initiate background fine-tuning tasks, en-
suring that the Al assistant remains aligned with an evolving
codebase and organizational policies. Research into robust
fine-tuning safeguards will be essential to prevent catastrophic
forgetting of general language understanding and to avoid the
amplification of biases present in localized data [242].

H. Explainable Al for Code Generation

Trust in Al-powered coding assistants hinges on the ability
to understand and interrogate their recommendations, neces-
sitating robust explainability mechanisms tailored to code
generation tasks [243]. Techniques from interpretable machine

46

learning—such as attention-weight visualizations over token
sequences, concept activation vectors mapping generated snip-
pets to training corpus exemplars, and counterfactual reasoning
that illustrates how alternative prompt formulations would
alter outputs—should be adapted to the programming domain
[244]. By instrumenting generation pipelines with symbolic
provenance tracking, suggestions can be annotated with the
specific API documentation references, style-guide rules, or
code examples that influenced their creation, enabling devel-
opers to query “why” and “how” particular fragments were
produced. Layering interactive explanation interfaces within
IDEs can allow users to drill down into the model’s rationale,
inspect relevant training artifacts, and request refutations of
generated code paths.

I. Secure-by-Design Al Coding Practices

Security considerations must be integrated at every stage
of Al-assisted development rather than treated as an af-
terthought. Future research should curate robust prompt li-
braries and fine-tuning datasets that embed defenses against
OWASP Top Ten vulnerabilities, cryptographic best practices
such as constant-time implementations, and secure authen-
tication flows leveraging modern protocols. Policy-as-code
engines—using frameworks like Open Policy Agent—can
enforce compliance rules in real time, automatically vetting
generated code against secure coding standards (e.g. CERT',
MISRA C'*!) and organizational policies before suggestions
enter the review pipeline. Hybrid analysis approaches combin-
ing SAST, DAST, and Interactive Application Security Testing
(IAST)'*? within the IDE will deliver multi-vector protection,
detecting both syntactic anti-patterns and runtime anomalies.
Furthermore, adversarial testing strategies—subjecting Al out-
puts to fuzzing, symbolic execution, and taint analysis—can
uncover subtle injection flaws prior to merge. Quantitative
studies comparing vulnerability injection rates under security-
augmented prompting and fine-tuning versus conventional
developer training will help validate the efficacy of these
secure-by-design methodologies, ensuring that Al assistance
strengthens rather than undermines codebase robustness.

J. Distributed Multi-Agent Collaboration Systems

While single Al assistants can accelerate localized tasks,
complex software projects stand to gain from orchestrated
networks of specialized agents, each dedicated to discrete
responsibilities—such as API endpoint synthesis, unit-test gen-
eration, documentation drafting, or performance profiling. Ar-
chitecting these multi-agent ecosystems calls for coordination
protocols inspired by distributed systems theory: consensus
algorithms (e.g. Raft'¥3, Paxos'**) to reconcile conflicting
suggestions, publish—subscribe messaging to broadcast task
completions, and transactional workflows to ensure atomic

140https://wiki.sei.cmu.edu/confluence/display/seccode

141 https://misra.org.uk/

142https://owasp.org/www-project-devsecops-guideline/latest/02c-
Interactive-Application-Security-Testing

193 nttps://raft.github.io/

44https://www.paxos.com/

updates across interdependent code modules. Middleware or-
chestration layers, potentially leveraging workflow engines
like Apache Airflow or Temporal, can sequence agent ac-
tivities, enforce dependency constraints, and offer rollback
mechanisms when undesirable outputs emerge. Dynamic agent
discovery mechanisms will allow teams to incorporate new
capabilities on demand, while capability negotiation ensures
that only appropriate agents act on sensitive code paths.

K. Integration with CI/CD Pipelines

Incorporating Al generation and validation steps into con-
tinuous integration and deployment workflows promises to
compress release cycles while upholding quality standards
[245]. Defining standardized pipeline stages—such as “Al-
Generate” for code scaffolding, “Al-Test” for auto-generated
unit and integration tests, and “Al-Audit” for security and
compliance scans—enables seamless insertion of Al capa-
bilities alongside traditional build, test, and deploy tasks in
Jenkins, GitLab CI, or GitHub Actions. Policy-as-code gating,
enforced through Open Policy Agent or similar frameworks,
can block automated merges when Al-produced artifacts
violate licensing, security, or style policies. Research into
pipeline architectures that dynamically provision inference
resources—spinning up fine-tuned containers on demand and
caching frequent generation requests—will be essential for
controlling operational costs and minimizing latency. End-to-
end empirical studies measuring pipeline throughput, failure
rates, and cost under varying Al-human collaboration models
will provide actionable insights for infrastructure optimization,
ensuring that Al augmentation scales with organizational needs
without introducing new bottlenecks or reliability risks.

L. Real-Time Code Quality Feedback

Millisecond-scale feedback loops embedded within the ed-
itor are critical for maintaining developer flow and prevent-
ing the accumulation of defects. Future IDEs must integrate
light-weight analysis engines—Ileveraging Tree-sitter for rapid
syntactic parsing and CodeQL'*® for expressive semantic
queries—that operate in parallel with Al suggestion modules.
As developers type or trigger generation commands, inline an-
notations can immediately flag performance hot spots, concur-
rency hazards, or potential injection vectors, allowing on-the-
fly remediation before code synthesis or commit. Predictive
models trained on historical commit and bug data can forecast
the likelihood of post-merge defects at the line or function
level, enabling preemptive review prioritization.

M. Domain-Specific Vibe Coding Frameworks

Generic Al coding assistants often struggle with domains
that impose stringent performance, safety, or regulatory con-
straints—such as embedded systems, real-time financial trad-
ing, or medical devices—where adherence to standards like
DO-178C or IEC 62304 is nonnegotiable. The creation of
domain-specialized “vibe coding” frameworks involves pre-
training and fine-tuning pipelines that incorporate curated

145 https://codeql.github.com/

47

corpora of industry-compliant code, domain ontologies cap-
turing key concepts and terminology, and validated test har-
nesses reflecting real-world scenarios. SDKs bundling prompt
templates, architectural skeletons, and sample test suites can
enable developers to leverage Al assistance without violating
domain constraints. Benchmark suites mirroring actual op-
erational requirements—latency budgets, memory footprints,
certification milestones—will facilitate empirical validation of
Al performance under specialized conditions.

N. Benchmarking Standards for Al-Generated Code

To catalyze transparent progress in Al-driven software syn-
thesis, the community must establish formal benchmark suites
encompassing diverse development tasks—GUI construction,
data pipeline orchestration, algorithm implementation, and
infrastructure-as-code provisioning—each paired with author-
itative reference solutions and automated validation harnesses.
Evaluation metrics should move beyond simple correctness
to encompass style conformity, test coverage thresholds,
performance efficiency, and subjective assessments of code
readability and architecture quality. Hosting annual “Vibe
Coding Challenges” modeled after Kaggle competitions can
galvanize researchers and practitioners to innovate in model
architectures, prompting strategies, and evaluation methodolo-
gies, with public leaderboards promoting reproducibility and
methodological rigor.

O. Licensing Frameworks for AI-Generated Software

The proliferation of Al-generated code artifacts raises com-
plex questions around intellectual property, authorship attribu-
tion, liability for defects, and permissible reuse across open-
source and proprietary contexts. Future efforts should pro-
pose adaptive licensing schemes that embed machine-readable
metadata within generated source files, specifying owner-
ship rights, usage restrictions, and attribution obligations.
Legal frameworks must clarify how Al contributions intersect
with existing copyright law—delineating the rights of model
providers, prompt authors, and downstream consumers—and
define liability boundaries for code that introduces defects
or security vulnerabilities. Developing standardized “Al Con-
tribution Statements” attached to each file—recording model
version, training dataset provenance, and prompt history—will
facilitate compliance audits, forensic analysis, and dispute
resolution.

P. Education Platforms for Vibe Coding Skill Development

Preparing the next generation of software engineers for
Al-augmented development demands pedagogically sound
platforms that seamlessly integrate Al assistance into cod-
ing education. Future learning environments should feature
curriculum-embedded Al tutors that present scaffolded exer-
cises, generate context-aware hints, and automatically grade
solutions along dimensions of correctness, style adherence,
and algorithmic efficiency. By instrumenting student interac-
tions—tracking prompt editing strategies, debugging iteration

counts, and error correction patterns—educators can gain fine-
grained analytics to tailor interventions and support individu-
alized learning trajectories. Peer-review workflows, in which
students critique Al-generated code for logic flaws or style
deviations, foster critical thinking and prevent overreliance on
automation. Ethical modules—covering bias detection, secu-
rity hygiene, and intellectual property considerations—can be
interwoven into the curriculum to instill responsible Al usage
practices.

VIII. CONCLUSION

Vibe coding heralds a fundamental transformation in soft-
ware engineering by elevating natural-language specifications
to the primary interface for code creation and entrusting
routine scaffolding, testing, and validation to intelligent agents.
This synergistic human—Al workflow condenses end-to-end
prototyping from weeks to minutes, democratizes development
access, and liberates engineers to concentrate on strategic
design, domain modeling, and complex problem solving. How-
ever, realizing its full potential mandates rigorous safeguards-
standardized benchmarks that assess not only functional cor-
rectness but also architectural conformity and security ro-
bustness; integrated “secure-by-design” pipelines and policy-
as-code enforcement to preempt vulnerabilities; provenance
and explainability frameworks that trace generated code back
to prompts and training artifacts; and a sustained human-in-
the-loop discipline to avert skill atrophy and overreliance.
Future progress in vibe coding ecosystem will depend on
crafting adaptive, context-aware agents that internalize project
conventions, embedding compliance checks directly into Al
toolchains, and advancing interpretable models whose recom-
mendations are transparent and auditable.

REFERENCES

[1] Gadhiya Y, Gangani CM, Sakariya AB, Bhavandla LK. Emerging Trends
in Sales Automation and Software Development for Global Enterprises.
International IT Journal of Research, ISSN: 3007-6706. 2024 Oct
18;2(4):200-14.

[2] Nguyen-Duc A, Cabrero-Daniel B, Przybylek A, Arora C, Khanna D,
Herda T, Rafiq U, Melegati J, Guerra E, Kemell KK, Saari M. Generative
Artificial Intelligence for Software Engineering—A Research Agenda.
arXiv preprint arXiv:2310.18648. 2023 Oct 28.

[3] Ozkaya I. The next frontier in software development: Al-augmented
software development processes. IEEE Software. 2023 Jul 7;40(4):4-9.

[4] Tatineni S. Integrating Artificial Intelligence with DevOps: Advanced
Techniques, Predictive Analytics, and Automation for Real-Time Op-
timization and Security in Modern Software Development. Libertatem
Media Private Limited; 2024 Mar 15.

[S] Wu-Gehbauer M, Rosenkranz C. Unlocking the potential of gen-
erative artificial intelligence: A case study in software devel-
opment [Internet]. 2024 [cited 2025 May 4]. Available from:
https://aisel.aisnet.org/icis2024/aiinbus/aiinbus/25/

[6] Mihaljevic B, Radovan A, Zagar M. An analysis of generative artificial
intelligence tools usage to adapt and enrich software development courses.
InInternational Conference on Education and New Developments 2024
2024 (pp. 553-557).

[7] Odeh A, Odeh N, Mohammed AS. A comparative review of Al techniques
for automated code generation in software development: advancements,
challenges, and future directions. TEM Journal. 2024 Feb 1;13(1):726.

[8] Singh S, Sambhav S. Application of Artificial Intelligence in Soft-
ware Development Life Cycle: A Systematic Mapping Study. Micro-
Electronics and Telecommunication Engineering: Proceedings of 6th
ICMETE 2022. 2023 Jun 2:655-65.

48

[9] Steidl M, Felderer M, Ramler R. The pipeline for the continuous
development of artificial intelligence models—Current state of research
and practice. Journal of Systems and Software. 2023 May 1;199:111615.

[10] Sundberg L, Holmstrom J. Democratizing artificial intelligence: How
no-code Al can leverage machine learning operations. Business Horizons.
2023 Nov 1;66(6):777-88.

[11] Bhat MI, Yaqoob SI, Imran M. Engineering challenges in the devel-
opment of artificial intelligence and machine learning software systems.
InSystem reliability and security 2023 Dec 7 (pp. 133-142). Auerbach
Publications.

[12] Brauner S, Murawski M, Bick M. The development of a competence
framework for artificial intelligence professionals using probabilistic topic
modelling. Journal of Enterprise Information Management. 2025 Jan
23;38(1):197-218.

[13] Amugongo LM, Kriebitz A, Boch A, Liitge C. Operationalising Al ethics
through the agile software development lifecycle: a case study of Al-
enabled mobile health applications. Al and Ethics. 2023 Aug 15:1-8.

[14] Samarakoon P, Asanka D, Jayalal S, Jayalath N. Analyzing the Learning
Effectiveness of Generative Al for Software Development for Undergrad-
uates in Sri Lanka. In2024 International Research Conference on Smart
Computing and Systems Engineering (SCSE) 2024 Apr 4 (Vol. 7, pp.
1-7). IEEE.

[15] Li K, Zhu A, Zhao P, Song J, Liu J. Utilizing deep learning to optimize
software development processes. arXiv preprint arXiv:2404.13630. 2024
Apr 21.

[16] Karpathy A. 2025 Feb 3 [cited 2025 May 4]. Available from:
https://x.com/karpathy/status/1886192184808149383?lang=en

[17] Edwards B. Will the future of software development run on vibes?
Ars Technica. 2025 Mar 5 [cited 2025 May 2]. Available from:
https://arstechnica.com/ai/2025/03/is-vibe-coding-with-ai-gnarly-or-
reckless-maybe-some-of-both/

[18] Roose K. Not a coder? With A.IL, just having an idea can be enough.
New York Times. 2025 Feb 27 [cited 2025 May 4]. Available from:
https://www.nytimes.com/2025/02/27/technology/personaltech/vibecoding-
ai-software-programming.html

[19] Chowdhury H, Mann J. Silicon Valley’s next act: bringing ’vibe coding’
to the world. Business Insider. 2025 Feb 13 [cited 2025 May 4].
Available from: https://www.businessinsider.com/vibe-coding-ai-silicon-
valley-andrej-karpathy-2025-2

[20] Naughton J. Now you don’t even need code to be a
programmer. But you do still need expertise. The Observer.
2025 Mar 16 [cited 2025 Mar 16]. Available from:

https://www.theguardian.com/technology/2025/mar/16/ai-software-
coding-programmer-expertise-jobs-threat

[21] Mehta I. A quarter of startups in YC’s current cohort have codebases
that are almost entirely Al-generated. TechCrunch. 2025 Mar 6 [cited
2025 May 6]. Available from: https://techcrunch.com/2025/03/06/a-
quarter-of-startups-in-ycs-current-cohort-have-codebases-that-are-almost-
entirely-ai-generated/

[22] Smith MS. Engineers are using AI to code based on vibes.
IEEE Spectr. 2025 Apr 8 [cited 2025 Apr 12]. Available from:
https://spectrum.ieee.org/vibe-coding

[23] Edwards B. AI coding assistant refuses to write code, tells user to
learn programming instead. Ars Technica. 2025 Mar 13 [cited 2025 May
6]. Available from: https://arstechnica.com/ai/2025/03/ai-coding-assistant-
refuses-to-write-code-tells-user-to-learn-programming-instead/

[24] Willison S. Not all Al-assisted programming is vibe coding (but vibe
coding rocks). Simon Willison’s Weblog. 2025 Mar 19 [cited 2025 Apr
20]. Available from: https://simonwillison.net/2025/Mar/19/vibe-coding/

[25] Willison S. Two publishers and three authors fail to understand what
“vibe coding” means. Simon Willison’s Weblog. 2025 May 1 [cited 2025
May 2]. Available from: https://simonwillison.net/2025/May/1/not-vibe-
coding/

[26] Osmani A. Vibe coding: The future of programming. Sebastopol:
O’Reilly Media; 2025. ISBN: 9798341634756.

[27] Paschal A. Testing your UX ideas with vibe coding: How UX designers
can use Al app builders to their advantage. UX Collect. 2025 Apr 16
[cited 2025 May 4]. Available from: https://uxdesign.cc/testing-your-ux-
ideas-with-vibe-coding-8302620c17af

[28] Palmer M. What is vibe coding? Replit Blog. 2025 Mar 26 [cited 2025
May 4]. Available from: https://blog.replit.com/what-is-vibe-coding

[29] McNulty N. Vibe coding: Al-assisted coding for non-developers.
Medium. 2025 Feb 23 [cited 2025 May 4]. Available from:
https://medium.com/@niall.mcnulty/vibe-coding-b79a6d3f0caa

[30] vincanger. A structured workflow for “vibe coding” full-stack
apps. DEV Community. 2025 Apr 16 [cited 2025 May 4]. Avail-

able from: https://dev.to/wasp/a-structured-workflow-for-vibe-coding-full-
stack-apps-3521

[31] Vibe coding war gets ugly. Analytics India Mag. 2025 Apr 16 [cited
2025 May 4]. Available from: https://analyticsindiamag.com/global-
tech/vibe-coding-war-gets-ugly/

[32] Smith MS. I started ‘vibe coding’ my own apps with Al I'm
absolutely loving it. PCWorld. 2025 Apr 18 [cited 2025 May 4].
Available from: https://www.pcworld.com/article/2660539/i-started-vibe-
coding-my-own-apps-with-ai-im-absolutely-loving-it.html

[33] Chakrabarty R. Vibe coding, the AI shortcut to build software if
you don’t know programming. India Today. 2025 Apr 28 [cited
2025 May 4]. Available from: https://www.indiatoday.in/education-
today/featurephilia/story/what-is-vibe-coding-can-ai-written-code-turn-
you-into-a-programmer-2716200-2025-04-28

[34] Chen A. Vibe coding, some thoughts and predictions.
Substack. 2025 Mar 10 [cited 2025 May 4]. Available from:
https://andrewchen.substack.com/p/predictionsthoughts-on-vibe-coding

[35] Mumba E. Top 10 vibe coding tools that feel like magic in
2025. DEV Community. 2025 Apr 21 [cited 2025 May 4]. Avail-
able from: https://dev.to/therealmrmumba/top-10-vibe-coding-tools-that-
feel-like-magic-in-2025-1md

[36] Talagala N. What is vibe coding? And why should you care?
Forbes. 2025 Mar 30 [cited 2025 May 4]. Available from:
https://www.forbes.com/sites/nishatalagala/2025/03/30/what-is-vibe-
coding-and-why-should-you-care/

[37] Chandrasekaran P. Can vibe coding produce production-grade software?
2025 Apr 30 [cited 2025 May 4].

[38] Neubig G. Vibe coding higher quality code. All Hands Blog. 2025
May 1 [cited 2025 May 4]. Available from: http://all-hands.dev/blog/vibe-
coding-higher-quality-code

[39] Karpathy A. 2025 Feb [Internet]. Available
https://x.com/karpathy/status/1886192184808149383?lang=en

[40] Chow M, Ng O. From technology adopters to creators: Leveraging Al-
assisted vibe coding to transform clinical teaching and learning. Med
Teach. 2025 Apr 9:1-3.

[41] Ghosh DP. Vibe Engineering Automation (VEA) and Orchestration
(VEO): An Al-Driven Framework for Design Integration in EPC
Projects [Internet]. 2025 Mar [cited 2025 May 4]. Available from:
https://doi.org/10.13140/RG.2.2.32917.64482

[42] Dunlap L, Mandal K, Darrell T, Steinhardt J, Gonzalez JE. VibeCheck:
Discover and Quantify Qualitative Differences in Large Language Mod-
els. arXiv preprint arXiv:2410.12851. 2024 Oct 10.

[43] Taulli T. Al-Assisted Programming: Better Planning, Coding, Testing,
and Deployment. Sebastopol: O’Reilly Media, Inc.; 2024 Apr 10.

[44] Lewis D. iOS and Android development experience for newbies. 2025
Apr 8 [Internet]. Available from: https://diyps.org/2025/04/08/ios-and-
android-development-experience-for-newbies/

[45] Wijaya S, Bolano J, Soteres AG, Kode S, Huang Y, Sahai A.
ReadMe.LLM: A Framework to Help LLMs Understand Your Library.
arXiv preprint arXiv:2504.09798. 2025 Apr 14.

[46] Brown MG, Carah N, Robards B, Dobson A, Rangiah L, De Lazzari
C. No targets, just vibes: Tuned advertising and the algorithmic flow of
social media. Soc Media Soc. 2024 Mar;10(1):20563051241234691.

[47] Bajohr H. Thinking with AL Machine Learn-
ing the Humanities. 2024 [Internet]. Available from:
https://library.oapen.org/handle/20.500.12657/100544

[48] Sajja R, Ramirez CE, Li Z, Demiray BZ, Sermet Y, Demir I. Integrating
Generative Al in Hackathons: Opportunities, Challenges, and Educational
Implications. Big Data Cogn Comput. 2024 Dec 13;8(12):188.

[49] Theijse BH. Image-Based Al for Industrial Design. 2024 [Internet].
Available from: http://resolver.tudelft.nl/uuid:e3116550-4c24-49bf-9da7-
a0f86f4abda8

[50] Ford C, Noel-Hirst A, Cardinale S, Loth J, Sarmento P, Wilson E, et al.
Reflection Across Al-based Music Composition. In: Proceedings of the
16th Conference on Creativity & Cognition; 2024 Jun 23. p. 398-412.

[51] de Roock RS. To become an object among objects: Generative artificial
“intelligence,” writing, and linguistic white supremacy. Read Res Q. 2024
Oct;59(4):590-608.

[52] Kamal MS, Nimmy SF, Dey N. Interpretable Code Summarization. IEEE
Trans Reliab. 2024 May 14.

[53] Zheng Q, Chen M, Park H, Xu Z, Huang Y. Evaluating Non-Al
Experts’ Interaction with AI: A Case Study in Library Context. In:
Proceedings of the 2025 CHI Conference on Human Factors in Com-
puting Systems; 2025 Apr 26. p. 1-20 [Internet]. Available from:
https://doi.org/10.1145/3706598.3714219

from:

49

[54] Yin M, Xiao R. VIBES: Exploring Viewer Spatial Interactions as Direct
Input for Livestreamed Content. arXiv preprint arXiv:2504.09016. 2025
Apr 12.

[55] Rafner J, Zana B, Hansen IB, Ceh S, Sherson JF, Benedek M, et al.
Agentic Perspectives on Human-AI Collaboration for Image Generation
and Creative Writing: Insights from Think-Aloud Protocols. 2025 [Inter-
net]. Available from: https://osf.io/4exwq/download

[56] Wang S, Ning Z, Truong A, Dontcheva M, Li D, Chilton LB. PodReels:
Human-AI Co-Creation of Video Podcast Teasers. In: Proceedings of the
2024 ACM Designing Interactive Systems Conference; 2024 Jul 1. p.
958-974.

[57] Kim Y, Lee SJ, Donahue C. Amuse: Human-AlI Collaborative Songwrit-
ing with Multimodal Inspirations. arXiv preprint arXiv:2412.18940. 2024
Dec 25.

[58] Gorecki J. Pair programming with ChatGPT for sampling and estimation
of copulas. Comput Stat. 2024 Sep;39(6):3231-61.

[59] Roose K. Not a Coder? With A, Just Having an Idea
Can Be Enough. 2025 Feb 27 [Internet]. Available from:
https://www.nytimes.com/2025/02/27/technology/personaltech/vibecoding-
ai-software-programming.html

[60] Kumar M. A Comprehensive Guide to Vibe Coding Tools. 2025
Mar [Internet]. Available from: https://madhukarkumar.medium.com/a-
comprehensive-guide-to-vibe-coding-tools-2bd35e2d7b4f

[61] Harkar S. What is vibe coding? IBM Think [Internet]. 2025 Apr 8 [cited
2025 May 4]. Available from: https://www.ibm.com/think/topics/vibe-
coding

[62] Merriam-Webster. Vibe coding [Internet]. 2025 Apr [cited 2025 May 4].
Available from: https://www.merriam-webster.com/slang/vibe-coding

[63] Sena P. Cracking the code of vibe coding. UX Collective [Internet]. 2025
Mar 22 [cited 2025 May 4]. Available from: https://uxdesign.cc/cracking-
the-code-of-vibe-coding-124b9288e551

[64] Mesarich B. What the hell is “vibe coding”? LinkedIn
[Internet]. 2025 Apr [cited 2025 May 4]. Available from:
https://www.linkedin.com/posts/brockmesarich_what-the-hell-is-vibe-
coding-vibe-activity-7307486650706599936-ta_r/

[65] Eaves M. The rise of vibe coding. Fast Company
net]. 2025 Apr 17 [cited 2025 May 4]. Available
https://www.fastcompany.com/91319102/the-rise-of-vibe-coding

[66] Ali Z. Why I'm learning to code in the age of vibe cod-
ing. How-To Geek [Internet]. 2025 Apr [cited 2025 May 4].
Available from: https://www.howtogeek.com/why-i-am-learning-to-code-
in-the-age-of-vibe-coding/

[67] Woollacott E. Want to supercharge your vibe coding skills? Here
are the best AI models developers can use to generate secure
code. ITPro [Internet]. 2025 Apr [cited 2025 May 4]. Available
from: https://www.itpro.com/software/development/vibe-coding-best-ai-
models-secure-code-generation

[68] Forrester. Vibe coding: AI's transformation of software develop-
ment. Forbes [Internet]. 2025 Apr 29 [cited 2025 May 4]. Available
from: https://www.forbes.com/sites/forrester/2025/04/29/vibe-coding-ais-
transformation-of-software-development/

[69] Hodges N. Vibe coding 1is groovy. InfoWorld [Internet].
2025 Mar 26 [cited 2025 May 4]. Available from:
https://www.infoworld.com/article/3853805/vibe-coding-with-claude-
code.html

[70] Treiber M. Vibe coding in software engineering. IKANGAI
[Internet]. 2025 Feb 26 [cited 2025 May 4]. Available from:
https://www.ikangai.com/vibe-coding-in-software-engineering/

[71] Stokel-Walker C. What is vibe coding, should you be doing it, and
does it matter? New Scientist [Internet]. 2025 Mar 27 [cited 2025 May
4]. Available from: https://www.newscientist.com/article/2473993-what-
is-vibe-coding-should-you-be-doing-it-and-does-it-matter/

[72] Kulp P. How AI tools are driving a vibe shift in programming.
Emerging Tech Brew [Internet]. 2025 Apr 29 [cited 2025 May 4]. Avail-
able from: https://www.emergingtechbrew.com/stories/2025/04/29/vibe-
coding-explained

[73] The Daily Star. Vibe coding: what is it? [Internet]. 2025 Apr
[cited 2025 May 4]. Available from: https://www.thedailystar.net/tech-
startup/news/vibe-coding-what-it-3877381

[74] Digitalogy. What is vibe coding and how is it different?
[Internet]. 2025 Apr 30 [cited 2025 May 4]. Available from:
https://www.digitalogy.co/blog/what-is-vibe-coding/

[75] Fore P. Silicon Valley CEO says ‘vibe coding’ lets 10 engineers do the
work of 100—here’s how to use it. Fortune [Internet]. 2025 Mar 26 [cited
2025 May 4]. Available from: https:/fortune.com/2025/03/26/silicon-
valley-ceo-says-vibe-coding-lets-10-engineers-do-the-work-of-100-heres-
how-to-use-it/

[Inter-
from:

[76] Rossi L. Vibe-coding workflows. Refactoring.fm [Internet]. 2025 Apr 30
[cited 2025 May 4]. Available from: https://refactoring.fm/p/vibe-coding-
workflows

[77] Anderson J. What is vibe coding? How creators can build software
without writing code. Alitu [Internet]. 2025 Feb 28 [cited 2025 May 4].
Available from: https://alitu.com/creator/workflow/what-is-vibe-coding/

[78] Rojo-Echeburua A. What is vibe coding? Definition, tools, pros, and
cons. DataCamp [Internet]. 2025 Apr 28 [cited 2025 May 4]. Available
from: https://www.datacamp.com/blog/vibe-coding

[79] Stephane. Vibe coding: the future of software development or just a
trend? Lovable.dev [Internet]. 2025 Mar 3 [cited 2025 May 4]. Available
from: https://lovable.dev/blog/what-is-vibe-coding

[80] Molina O, Butollo F, Mako C, Godino A, Holtgrewe U, Illsoe A, Junte
S, Larsen TP, Illesy M, Pap J, Wotschack P. It takes two to code: a
comparative analysis of collective bargaining and artificial intelligence.
Transfer Eur Rev Labour Res. 2023 Feb;29(1):87-104.

[81] Candrian C, Scherer A. Rise of the machines: Delegating decisions to
autonomous Al. Comput Human Behav. 2022 Sep 1;134:107308.

[82] Fugener A, Grahl J, Gupta A, Ketter W. Cognitive challenges in
human-artificial intelligence collaboration: Investigating the path toward
productive delegation. Inf Syst Res. 2022 Jun;33(2):678-96.

[83] Cabrera AA. Behavior-Driven Al Development [doctoral dissertation].
Berkeley (CA): University of California, Berkeley; 2024. Available from:
http://reports-archive.adm.cs.cmu.edu/anon/anon/usr0/ftp/hcii/CMU-
HCII-24-101.pdf

[84] Farooq MS, Omer U, Ramzan A, Rasheed MA, Atal Z. Behavior driven
development: A systematic literature review. IEEE Access. 2023 Aug
7;11:88008-24.

[85] Paduraru C, Zavelca M, Stefanescu A. Agentic Al for
behavior-driven ~ development testing using large language
models [Internet]. 2025 [cited 2025 May 4]. Available from:
https://www.scitepress.org/Papers/2025/133744/133744.pdf

[86] Yousaf Z. Framework for improving software requirements via
automated behavior-driven development: a priority-based approach
[Internet]. MCS; 2025 [cited 2025 May 4]. Available from:
https://repositories.nust.edu.pk/xmlui/handle/123456789/46756

[87] EQUATOR Network. Development of GROVE: a guideline for reporting
vignette experiments conducted in a healthcare context [Internet]. 2025
May 2 [cited 2025 May 4]. Available from: https://www.equator-
network.org/reporting-guidelines/development-of-grove-a-guideline-for-
reporting-vignette-experiments-conducted-in-a-healthcare-context/

[88] Juvekar K, Purwar A. Introducing a new hyper-parameter for RAG:
Context Window Utilization. arXiv. 2024 Jul 29; arXiv:2407.19794.
[89] Li X, Cao Y, Ma Y, Sun A. Long Context vs. RAG for LLMs: An

Evaluation and Revisits. arXiv. 2024 Dec 27; arXiv:2501.01880.

[90] Phan H, Acharya A, Chaturvedi S, Sharma S, Parker M, Nally D,
et al. Rag vs. long context: Examining frontier large language models
for environmental review document comprehension. arXiv. 2024 Jul;
arXiv:2407.

[91] Buddiga P. Scaling Intelligent Systems with Multi-Channel Retrieval
Augmented Generation (RAG): A robust Framework for Context Aware
Knowledge Retrieval and Text Generation. In: Proc 2024 Global Conf
Commun Inf Technol (GCCIT); 2024 Oct 25. p. 1-10. IEEE.

[92] Microsoft. Language Server Protocol [Internet]. 2025 May [cited
2025 May 4]. Available from: https://microsoft.github.io/language-server-
protocol/

[93] Deng L, Zhong Q, Qiu Y, Chen J, Lei H, Yang S, et al. LLM-
based program analysis for source codes, ASTs and WebAssembly
instructions [Internet]. 2025 May [cited 2025 May 4]. Available from:
https://www.researchsquare.com/article/rs-5419799/v1

[94] Chen H, Morimoto M, Shota M, Hosomi T. Together we are bet-
ter: LLM, IDE and semantic embedding to assist move method
refactoring [Internet]. 2025 [cited 2025 May 4]. Available from:
https://fraolbatole.github.io/assets/pdf/MMAssist.pdf

[95] Zhang Y, Li Y, Meredith G, Zheng K, Li X. Move method refactoring
recommendation based on deep learning and LLM-generated information.
Inf Sci. 2025 Apr 1;697:121753.

[96] Microsoft. Dependency injection into controllers in
ASP.NET Core [Internet]. 2024 Jun [cited 2025
May 4]. Available from: https://learn.microsoft.com/en-

us/aspnet/core/mvc/controllers/dependency-injection?view=aspnetcore-
9.0
[97] StructureMap. Inline Dependencies. 2025. Available
https://structuremap.github.io/registration/inline-dependencies/
[98] FasterCapital. What is pair programming and why is it used in
software development? FasterCapital [Internet]. 2025 May 4 [cited

from:

50

2025 May 4]. Available from: https://fastercapital.com/topics/what-is-
pair-programming-and-why-is-it-used-in-software-development.html
[99] Phillis J. I use vibe coding and AI to run my Etsy and
Shopify store. Business Insider. 2025 Apr. Available from:

https://www.businessinsider.com/vibe-coding-etsy-seller-ai-boost-
revenue-2025-4

[100] Bisht S. What is ’Vibe’ coding? Will it change software
engineering? Trend explained. Newsl8. 2025 Mar 30. Available
from: https://www.news18.com/explainers/what-is-vibe-coding-will-it-
change-software-engineering-trend-explained-9280745.html

[101] Zbrain.ai. What is vibe coding? Al-powered software development
explained. 2025. Available from: https://zbrain.ai/what-is-vibe-coding/

[102] Beattie D. The problem with “Vibe Coding”. 2025 Apr 11.
Available from: https://dylanbeattie.net/2025/04/11/the-problem-with-
vibe-coding.html

[103] Yegge S. The Death of the Stubborn Developer. Medium. 2024
Dec 10. Available from: https://steve-yegge.medium.com/the-death-of-
the-stubborn-developer-b5e8f78d326b

[104] Thielen RJ. Conversational Programming
University of Chicago. [cited 2018 Dec 29].
https://www.lib.uchicago.edu

[105] Computer History Museum. Conversational
Programming System (CPS). Available from:
https://www.computerhistory.org/collections/catalog/102773382

[106] LUMIQ.AIL. Prompt-Based Development: The Current Landscape
And Path To Full Autonomy. Medium. 2025 Mar 26. Avail-
able from: https://medium.com/lumiqg-tech/prompt-based-development-
the-current-landscape-and-path-to-full-autonomy-ff306c6f6619

[107] Karpathy A. Vibe coding MenuGen. 2025 Apr 27. Available from:
https://karpathy.bearblog.dev/vibe-coding-menugen/

[108] Ramel D. Vibe writing. Visual Studio Magazine. 2025 Jan 5. Available
from: https://visualstudiomagazine.com/articles/2025/05/01/vibe-
writing.aspx

[109] Lorica B. Vibe coding and the rise of Al agents: The future of software
development is here. The Data Exchange. 2025 Apr 24. Available from:
https://thedataexchange.media/vibe-coding-chop-steve-yegge

[110] Oliver AC. Vibe code or retire. InfoWorld. 2025 Apr 22.
Available from: https://www.infoworld.com/article/3960574/vibe-code-
or-retire.html

[111] Kanetkar R. Monzo’s former CEO shares 3 tips for getting
the most out of vibe coding. Business Insider. 2025 Apr. Avail-
able from: https://www.businessinsider.com/monzo-tom-blomfield-vibe-
coding-tips-ai-tools-2025-4

[112] Kotsiantis S, Verykios V, Tzagarakis M. Al-assisted programming
tasks using code embeddings and transformers. Electronics. 2024 Feb
15;13(4):767.

[113] Taulli T. Al-Assisted Programming: Better Planning, Coding, Testing,
and Deployment. O’Reilly Media, Inc.; 2024 Apr 10.

[114] LeewayHertz. Al-assisted coding: Tools, Types, working mecha-
nism, benefits, and future trends. 2025 May 4. Available from:
https://www.leewayhertz.com/ai-assisted-coding/

[115] Knuth G. End wusers can code with AIl, but IT must
be wary. TechTarget. 2025 Apr 30. Available from:
https://www.techtarget.com/searchenterprisedesktop/opinion/End-users-
can-code-with-Al-but-IT-must-be-wary

[116] Bort J. Adaptive Computer wants to reinvent the PC with ’vibe’
coding for non-programmers. TechCrunch. 2025 Apr 22. Avail-
able from: https://techcrunch.com/2025/04/22/adaptive-computer-wants-
to-reinvent-the-pc-with-vibe-coding-for-non-programmers/

[117] Hackaday. VESC mods made via vibe coding. 2025 Apr 27. Avail-
able from: https://hackaday.com/2025/04/27/vesc-mods-made-via-vibe-
coding/

[118] Blend Visions. 5 best MCP servers for effortless vibe coding in 2025.
2025 Apr.

[119] Zoho wants to be your go-to platform for meaningful vibe
coding. Analytics India Magazine. 2025 Apr 30. Available from:
https://analyticsindiamag.com/ai-features/zoho-wants-to-be-your-go-to-
platform-for-meaningful-vibe-coding/

[120] Ramel D. Vibe coding pioneer advises ’tight leash’ to rein
in Al BS. Visual Studio Magazine. 2025 Apr 25. Available
from: https://visualstudiomagazine.com/articles/2025/04/25/vibe-coding-
pioneer-advises-tight-leash-to-rein-in-ai-bs.aspx

[121] Cendyne.dev. Vibe coding vs reality. 2025 Mar 19. Available from:
https://cendyne.dev/posts/2025-03-19-vibe-coding-vs-reality.html

[122] Peter. vibecoding. Lobsters. 2025 Apr. Available
https://lobste.rs/s/lkngrz/new_tag_vibecoding

System. The
Available from:

from:

[123] Feng K, Luo L, Xia Y, Luo B, He X, Li K, Zha Z, Xu B, Peng
K. Optimizing Microservice Deployment in Edge Computing with Large
Language Models: Integrating Retrieval Augmented Generation and
Chain of Thought Techniques. Symmetry. 2024 Nov 5;16(11):1470.

[124] Almutawa M, Ghabrah Q, Canini M. Towards LLM-Assisted System
Testing for Microservices. In2024 IEEE 44th International Conference on
Distributed Computing Systems Workshops (ICDCSW) 2024 Jul 23 (pp.
29-34). IEEE.

[125] Chaudhary D, Vadlamani SL, Thomas D, Nejati S, Sabetzadeh M.
Developing a Llama-Based Chatbot for CI/CD Question Answering:
A Case Study at Ericsson. In2024 IEEE International Conference on
Software Maintenance and Evolution (ICSME) 2024 Oct 6 (pp. 707-718).
IEEE.

[126] Bajpai G, Schildmeijer M, Mishra M, Piwosz P. CI/CD Design Pat-
terns: Design and implement CI/CD using proven design patterns. Packt
Publishing Ltd; 2024 Dec 13.

[127] Open Policy Agent. OPA Gatekeeper. 2025 Apr. Available from:
https://www.openpolicyagent.org/integrations/gatekeeper/

[128] dateutil. RRULE-style schedules. 2025 Apr. Available
https://dateutil.readthedocs.io/en/stable/rrule.html

[129] Amazon Web Services. CQRS pattern. 2025 Apr. Available from:
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-
data-persistence/cqrs-pattern.html

[130] Esteban-Lozano I, Castro-Gonzalez A, Martinez P. Using a LLM-
Based Conversational Agent in the Social Robot Mini. InInternational
Conference on Human-Computer Interaction 2024 May 23 (pp. 15-26).
Cham: Springer Nature Switzerland.

[131] Xu Y, Hou Q, Wan H, Prpa M. Safe guard: an llm-agent for real-time
voice-based hate speech detection in social virtual reality. arXiv preprint
arXiv:2409.15623. 2024 Sep 23.

[132] Xie J, Chen Z, Zhang R, Wan X, Li G. Large multimodal agents: A
survey. arXiv preprint arXiv:2402.15116. 2024 Feb 23.

[133] She X, Zhao Y, Wang H. WaDec: Decompiling WebAssembly Using
Large Language Model. InProceedings of the 39th IEEE/ACM Interna-
tional Conference on Automated Software Engineering 2024 Oct 27 (pp.
481-492).

[134] Yun S. Pretrained LLM Adapted with LoRA as a Decision Transformer
for Offline RL in Quantitative Trading. arXiv preprint arXiv:2411.17900.
2024 Nov 26.

[135] Li XL, Liang P. Prefix-tuning: Optimizing continuous prompts for
generation. arXiv preprint arXiv:2101.00190. 2021 Jan 1.

[136] Ferrag MA, Tihanyi N, Debbah M. From LLM Reasoning to
Autonomous Al Agents: A Comprehensive Review. arXiv preprint
arXiv:2504.19678. 2025 Apr 28.

[137] Li X, Shi H, Xu R, Xu W. AI Awareness.
arXiv:2504.20084. 2025 Apr 25.

[138] Qiu H, Fabbri AR, Agarwal D, Huang KH, Tan S, Peng N, Wu CS.
Evaluating Cultural and Social Awareness of LLM Web Agents. arXiv
preprint arXiv:2410.23252. 2024 Oct 30.

[139] Kaur D, Uslu S, Durresi M, Durresi A. LLM-based agents utilized in
a trustworthy artificial conscience model for controlling Al in medical
applications. InInternational Conference on Advanced Information Net-
working and Applications 2024 Apr 10 (pp. 198-209). Cham: Springer
Nature Switzerland.

[140] Talukdar W, Biswas A. Improving large language model (Ilm) fidelity
through context-aware grounding: A systematic approach to reliability
and veracity. arXiv preprint arXiv:2408.04023. 2024 Aug 7.

[141] Epperson W, Bansal G, Dibia V, Fourney A, Gerrits J, Zhu E, Amershi
S. Interactive Debugging and Steering of Multi-Agent Al Systems. arXiv
preprint arXiv:2503.02068. 2025 Mar 3.

[142] Zhang K, Zhang C, Wang C, Zhang C, Wu Y, Xing Z, Liu Y, Li Q,
Peng X. LogiAgent: Automated Logical Testing for REST Systems with
LLM-Based Multi-Agents. arXiv preprint arXiv:2503.15079. 2025 Mar
19.

[143] Yang W, Wang H, Liu Z, Li X, Yan Y, Wang S, Gu Y, Yu M, Liu Z,
Yu G. Enhancing the code debugging ability of llms via communicative
agent based data refinement. arXiv preprint arXiv:2408.05006. 2024 Aug
9.

[144] Xia B, Lu Q, Zhu L, Xing Z, Zhao D, Zhang H. An Evaluation-Driven
Approach to Designing LLM Agents: Process and Architecture. arXiv
preprint arXiv:2411.13768. 2024 Nov 21.

[145] Xiang Z, Zheng L, Li Y, Hong J, Li Q, Xie H, Zhang J, Xiong Z, Xie
C, Yang C, Song D. Guardagent: Safeguard 1lm agents by a guard agent
via knowledge-enabled reasoning. arXiv preprint arXiv:2406.09187. 2024
Jun 13.

[146] Ayyamperumal SG, Ge L. Current state of LLM Risks and Al
Guardrails. arXiv preprint arXiv:2406.12934. 2024 Jun 16.

from:

arXiv preprint

51

[147] Kang M, Li B. R2-Guard: Robust Reasoning Enabled LLM
Guardrail via Knowledge-Enhanced Logical Reasoning. arXiv preprint
arXiv:2407.05557. 2024 Jul 8.

[148] Luo W, Dai S, Liu X, Banerjee S, Sun H, Chen M, Xiao C. Agrail:
A lifelong agent guardrail with effective and adaptive safety detection.
arXiv preprint arXiv:2502.11448. 2025 Feb 17.

[149] Vadlapati P. UpdAgent: AI Agent Version Control Framework for Real-
Time Updation of Tools. https://www.researchgate.net/profile/Praneeth-
Vadlapati/publication/385799037

[150] Yuksel KA, Sawaf H. A Multi-Al Agent System for Autonomous
Optimization of Agentic Al Solutions via Iterative Refinement and LLM-
Driven Feedback Loops. arXiv preprint arXiv:2412.17149. 2024 Dec 22.

[151] Han Y, Guo Z. Regulator-Manufacturer AI Agents Modeling: Mathe-
matical Feedback-Driven Multi-Agent LLM Framework. arXiv preprint
arXiv:2411.15356. 2024 Nov 22.

[152] Laleh AR, Ahmadabadi MN. A survey on enhancing reinforcement
learning in complex environments: Insights from human and 1lm feedback.
arXiv preprint arXiv:2411.13410. 2024 Nov 20.

[153] Bolt.new [Internet]. 2025 [cited 2025 May 1]. Available from:

https://bolt.new/
[154] StackBlitz’s ‘WebContainers [Internet]. 2025
[cited 2025 May 1]. Available from:

https://developer.stackblitz.com/platform/webcontainers/browser-config
[155] Lovable [Internet]. 2025 [cited 2025 May 1]. Available from:

https://lovable.dev/

[156] vO by Vercel [Internet]. 2025 [cited 2025 May 1]. Available from:
https://v0.dev/

[157] Replit [Internet]. 2025 [cited 2025 May 1]. Available from:
https://replit.com/

[158] Create [Internet]. 2025 [cited 2025 May 1]. Available from:
https://www.create.xyz/
[159] Trickle AI [Internet]. 2025 [cited 2025 May 1]. Available from:

https://www.trickle.so/

[160] Tempo [Internet]. 2025 [cited 2025 May 1]. Available from:
https://www.tempo.new/

[161] Softgen [Internet]. 2025 [cited 2025 May 1]. Available from:
https://softgen.ai/

[162] Lazy Al [Internet]. 2025 [cited 2025 May 1]. Available from:
https://getlazy.ai/

[163] HeyBoss [Internet]. 2025 [cited 2025 May 1].

[164] Creatr [Internet]. 2025 [cited 2025 May 1]. Available from:
https://www.create.xyz/

[165] Microsoft. Row-Level Security (RLS) [Internet]. 2025 [cited

2025 May 1]. Available from: https://learn.microsoft.com/en-
us/fabric/security/service-admin-row-level-security
[166] Rork [Internet]. 2025 [cited 2025 May 1].
https://rorkai.com/

[167] Firebase Studio [Internet]. 2025 [cited 2025 May 1]. Available from:
https://firebase.studio/

[168] Napkins.dev [Internet]. 2025 [cited 2025 May 1]. Available from:
https://www.napkins.dev/

[169] Devin Al [Internet]. 2025 [cited 2025 May 1]. Available from:
https://devin.ai/

[170] All Hands AI [Internet]. 2025 [cited 2025 May 1]. Available from:
https://www.all-hands.dev/

[171] Windsurf Editor [Internet]. 2025 [cited 2025 May 3]. Available from:
https://windsurf.com/editor

[172] Cursor [Internet]. 2025 [cited 2025 May 3].
https://www.cursor.com/

[173] Zed [Internet]. 2025
https://zed.dev/

[174] Zencoder AI [Internet]. 2025 [cited 2025 May 3]. Available from:
https://zencoder.ai/

[175] Trae AI [Internet]. 2025 [cited 2025 May 3]. Available from:
https://www.trae.ai/

[176] Cody [Internet]. 2025
https://sourcegraph.com/cody

[177] Cline [Internet]. 2025
https://cline.bot/

[178] Roo Code [Internet]. 2025 [cited 2025 May 3]. Available from:
https://github.com/RooVetGit/Roo-Code

[179] Avante.nvim [Internet]. 2025 [cited 2025 May 3]. Available from:
https://github.com/yetone/avante.nvim

[180] backnotprop/prompt-tower [Internet]. 2025 [cited 2025 May 3]. Avail-
able from: https://github.com/backnotprop/prompt-tower

[181] Augment Code [Internet]. 2025 [cited 2025 May 3]. Available from:
https://www.augmentcode.com/

Available from:

Available from:

[cited 2025 May 3]. Available from:

[cited 2025 May 3]. Available from:

[cited 2025 May 3]. Available from:

[182] continuedev/continue [Internet]. 2025 [cited 2025 May 3]. Available
from: https://www.continue.dev/

[183] GitHub Copilot [Internet]. 2025 [cited 2025 May 3]. Available from:
https://github.com/features/copilot

[184] Claude Code [Internet]. 2025 [cited 2025 May 3]. Available from:
https://github.com/anthropics/claude-code

[185] Aider [Internet]. 2025 [cited 2025 May 3].
https://aider.chat/

[186] codename goose [Internet]. 2025 [cited 2025 May 3]. Available from:
https://block.github.io/goose/

[187] MyCoder.ai [Internet]. 2025 [cited 2025 May 3]. Available from:
http://mycoder.ai/

[188] RA.Aid [Internet]. 2025 [cited 2025 May 3]. Available from: https://ra-
aid.ai/

[189] CodeSelect [Internet]. 2025 [cited 2025 May 3]. Available from:
https://github.com/maynetee/codeselect

[190] OpenAl Codex CLI [Internet]. 2025 [cited 2025 May 3]. Available
from: https://github.com/openai/codex

[191] files-to-prompt [Internet]. 2025 [cited 2025 May 3]. Available from:
https://github.com/simonw/files-to-prompt

[192] Repomix [Internet]. 2025 [cited 2025 May 3]. Available from:
https://repomix.com/

[193] Boomerang Tasks [Internet]. 2025 [cited 2025 May 3]. Available from:
https://docs.roocode.com/features/boomerang-tasks

[194] Claude Task Master [Internet]. 2025 [cited 2025 May 3]. Available
from: https://www.task-master.dev/

[195] Matleena S. Vibe coding: what it is and how it works [Internet].
Hostinger Tutorials. 2025 Apr 17 [cited 2025 May 2]. Available from:
https://www.hostinger.in/tutorials/vibe-coding

[196] Pixelmatters. What are the real benefits and risks of vibe cod-
ing? [Internet]. 2025 Apr 17 [cited 2025 May 2]. Available from:
https://www.pixelmatters.com/blog/benefits-risks-vibe-coding

[197] Tkachov A. The rise of vibe coding: how Al is democratizing software
development [Internet]. LinkedIn. 2025 Apr 7 [cited 2025 May 2].
Available from: https://www.linkedin.com/pulse/rise-vibe-coding-how-ai-
democratizing-software-arthur-tkachov-engge

[198] Smith B. The rise of vibe coding: democratizing software de-
velopment [Internet]. Medium. 2025 Apr 7 [cited 2025 May 2].
Available from: https://medium.com/@seacloud9/the-rise-of-vibe-coding-
democratizing-software-development-5775c6f1ea3d

[199] Agrawal J. The rise of vibe coding: what it means for the future of soft-
ware development [Internet]. Medium. 2025 Mar 31 [cited 2025 May 2].
Available from: https://medium.com/@jalajagr/the-rise-of-vibe-coding-
what-it-means-for-the-future-of-software-development-08f4abce 10df

[200] Nielsen J. Vibe coding and vibe design [Internet]. UX
Tigers. 2025 Mar 7 [cited 2025 May 2]. Available from:
https://www.uxtigers.com/post/vibe-coding-vibe-design

[201] Manukrishnan SR, Gupta A, Bodda Y. Intent is the new syntax:
why vibe coding represents a shift in software development [Internet].
Everest Group. 2025 Apr 23 [cited 2025 May 2]. Available from:
https://www.everestgrp.com/blog/intent-is-the-new-syntax-why-vibe-
coding-represents-a-shift-in-software-development-blog.html

[202] Liddle J. Is your enterprise organization vibe coding? [In-
ternet]. Nasuni. 2025 Apr 9 [cited 2025 May 2]. Available
from: https://www.nasuni.com/blog/is-your-enterprise-organization-vibe-
coding/

[203] Jin. Vibe testing and how Al is transforming software quality
assurance [Internet]. ShiftAsia. 2025 Apr 23 [cited 2025 May 2].
Available from: https://shiftasia.com/column/vibe-testing-and-how-ai-is-
transforming-software-quality-assurance/

[204] Shukla V. Vibe coding: shaping the future of software [Internet].
HackerEarth. 2025 Apr 16 [cited 2025 May 2]. Available from:
https://www.hackerearth.com/blog/talent-assessment/vibe-coding-
shaping-the-future-of-software/

[205] Index.dev. The rise of vibe coding: how Al is changing develop-
ment [Internet]. 2025 Mar 24 [cited 2025 May 2]. Available from:
https://www.index.dev/blog/vibe-coding-ai-development

[206] Batt A. The rise of vibe coding [Internet]. CoAL 2025 Mar 23 [cited
2025 May 2]. Available from: https://getcoai.com/article/the-rise-of-vibe-
coding/

[207] Parker A. How does ‘vibe coding’ work with observability? [In-
ternet]. Honeycomb.io. 2025 Apr 7 [cited 2025 May 2]. Available
from: https://www.honeycomb.io/blog/how-does-vibe-coding-work-with-
observability

[208] Chandrasekaran P. Can vibe coding produce production-grade soft-
ware? [Internet]. ThoughtWorks. 2025 Apr 30 [cited 2025 May 2]. Avail-

Available from:

52

able from: https://www.thoughtworks.com/en-in/insights/blog/generative-
ai/can-vibe-coding-produce-production-grade-software

[209] Insights on India. Vibe coding [Internet]. 2025 Apr 1 [cited 2025 May
2]. Available from: https://www.insightsonindia.com/2025/04/01/vibe-
coding/

[210] Liu J. Version control for the vibe coder (Part 1) [Internet].
JXNL. 2025 Mar 18 [cited 2025 May 2]. Available from:
https://jxnl.co/writing/2025/03/18/version-control-for-the-vibe-coder-
part-1/

[211] Creten A. Vibe coding and the junior developer dilemma [Inter-
net]. Made with Love. 2025 Apr 8 [cited 2025 May 2]. Avail-
able from: https://madewithlove.com/blog/vibe-coding-and-the-junior-
developer-dilemma/

[212] Osmani A. Vibe coding is not an excuse for low-quality work [In-
ternet]. Substack. 2025 Apr 18 [cited 2025 May 2]. Available from:
https://addyo.substack.com/p/vibe-coding-is-not-an-excuse-for

[213] Dulude R. (Vibe) coding securely [Internet]. LinkedIn. 2025 Apr 7
[cited 2025 May 2]. Available from: https://www.linkedin.com/pulse/vibe-
coding-securely-richard-dulude-qv6ae/

[214] Khan A. Vibe coding: the future of software development is here
[Internet]. YourStory. 2025 Apr [cited 2025 May 2]. Available from:
https://yourstory.com/2025/04/vibe-coding-tech-trend-explained

[215] Kumili L. Vibe coding: flow, freedom, and a framework for
balance [Internet]. Medium. [cited 2025 May 2]. Available from:
https://medium.com/@leela. kumili/vibe-coding-flow-freedom-and-a-
framework-for-balance-3cdf996743f9

[216] Avakians S. Vibe coding: the good, bad, & fixes [Internet].
Medium. 2025 Apr 2 [cited 2025 May 2]. Available from:
https://medium.com/@sevakavakians/vibe-coding-the-good-bad-fixes-
14f65df783ec

[217] Gupta M. Don’t be a vibe coder: problems with vibe cod-
ing [Internet]. Medium. 2025 Mar 19 [cited 2025 May 2]. Avail-
able from: https://medium.com/data-science-in-your-pocket/dont-be-a-
vibe-coder-30fa7¢525971

[218] Gupta A. Coding vs VIBE coding [Internet]. Medium. 2025 Mar
15 [cited 2025 May 2]. Available from: https://medium.com/write-a-
catalyst/you-are-fired-now-80458d77205a

[219] Metana.io. Vibe coding vs traditional coding: key differences
[Internet]. 2025 Apr 1 [cited 2025 May 2]. Available from:
https://metana.io/blog/vibe-coding-vs-traditional-coding-key-differences/

[220] Pratap Z. Vibe coding: for whom? how? when? [Internet].
LinkedIn. 2025 Mar 18 [cited 2025 May 2]. Available from:
https://www.linkedin.com/pulse/vibe-coding-whom-how-when-zubin-
pratap-Or7se/

[221] Singh AV. What is Vibe coding and how is it revolutionising
software industry? TechGig. 2025 Apr 13. Available from:
https://content.techgig.com/technology/discover-vibe-coding-the-creative-
revolution-in-software-development/articleshow/120252726.cms

[222] Willison S. Authors fail to understand what “vibe coding” means
[Internet]. Simon Willison’s Weblog. 2025 May 1 [cited 2025 May 2].
Available from: https://simonwillison.net/2025/May/1/not-vibe-coding/

[223] Wilkes B. The trouble with vibe coding: When AI hype meets real-
world software [Internet]. Equal Experts. 2025 Mar 18 [cited 2025
May 2]. Available from: https://www.equalexperts.com/blog/data-ai-2/the-
trouble-with-vibe-coding-when-ai-hype-meets-real-world-software/

[224] Trotta F. 5 vibe coding risks and ways to avoid them in 2025
[Internet]. Zencoder. 2025 Apr 2 [cited 2025 May 2]. Available from:
https://zencoder.ai/blog/vibe-coding-risks

[225] Hot take: Vibe <coding is NOT the future [Inter-
net]. Reddit. [cited 2025 May 2]. Available from:
https://www.reddit.com/r/ChatGPTCoding/comments/liueymf/hot_take
_vibe_coding_is_not_the_future/

[226] Namanyay. Karpathy’s ‘vibe coding’ movement considered harmful
[Internet]. NMN. 2025 Mar 27 [cited 2025 May 2]. Available from:
https://nmn.gl/blog/dangers-vibe-coding

[227] Padro M. Vibe coding: Evolution, adoption, challenges and future
trends [Internet]. Ardor Cloud. 2025 Mar 18 [cited 2025 May 2].
Available from: https://ardor.cloud/blog/vibe-coding-evolution-adoption-
challenges-future

[228] Yang P. 12 rules to vibe code without frustration [Internet]. Cre-
ator Economy. 2025 Mar 19 [cited 2025 May 2]. Available from:
https://creatoreconomy.so/p/12-rules-to-vibe-code-without-frustration

[229] Kim G, Yegge S. Vibe coding [Internet]. IT Revolution. [cited 2025
May 2]. Available from: https://itrevolution.com/product/vibe-coding-
book/

[230] Checkmarx Team. Security in vibe coding: Innovation meets risk
[Internet]. Checkmarx. 2025 Apr 2 [cited 2025 May 2]. Available from:
https://checkmarx.com/blog/security-in-vibe-coding/

[231] Vibe coding and CHOP: What you need to know about Al-driven de-
velopment [Internet]. Gradient Flow. [cited 2025 May 2]. Available from:
https://gradientflow.com/vibe-coding-and-chop-what-you-need-to-know/

[232] Saadioui Z. A deep dive into the ethics of “vibe coding” and its
implications for professional developers [Internet]. ArsTurn. 2025 Apr
17 [cited 2025 May 2]. Available from: https://www.arsturn.com/blog/a-
deep-dive-into-the-ethics-of-vibe-coding

[233] Intigriti. Finding more vulnerabilities in vibe coded apps [Internet].
Intigriti. 2025 Apr 16 [cited 2025 May 2]. Available from:
https://www.intigriti.com/researchers/blog/hacking-tools/vibe-coding-
security-vulnerabilities

[234] Anecone N. Vibe coding: The kiss of death? [Internet].
Medium. 2025 Apr 1 [cited 2025 May 2]. Available from:
https://medium.com/@nanecone/vibe-coding-the-kiss-of-death-
7f1e42£18027

[235] Sewak M. Vibe coding: Prompt it, got it, regret it? The risks of
the vibe trend you haven’t spotted [Internet]. LinkedIn. 2025 Apr 1
[cited 2025 May 2]. Available from: https://www.linkedin.com/pulse/vibe-
coding-prompt-got-regret-risks-trend-you-mohit-sewak-ph-d-gvcde/

[236] Osmani A. Vibe coding: Revolution or reckless abandon? [Inter-
net]. Substack. 2025 Apr 3 [cited 2025 May 2]. Available from:
https://addyo.substack.com/p/vibe-coding-revolution-or-reckless

[237] Lee H, Phatale S, Mansoor H, Mesnard T, Ferret J, Lu K, et al. RLAIF
vs. RLHF: Scaling reinforcement learning from human feedback with Al
feedback. arXiv preprint arXiv:2309.00267. 2023 Sep 1.

[238] Barresi G. Neuroergonomics for human-centered technological con-
texts. In: Digital Environments and Human Relations 2024. Cham:
Springer; 2024. p. 61-85.

[239] Watanabe S. Tree-structured Parzen estimator: Understanding its algo-
rithm components and their roles for better empirical performance. arXiv
preprint arXiv:2304.11127. 2023 Apr 21.

[240] Guan C, Huang C, Li H, Li Y, Cheng N, Liu Z, et al. Multi-stage
LLM fine-tuning with a continual learning setting. In: Findings of the
Association for Computational Linguistics: NAACL 2025. 2025 Apr. p.
5484-98.

[241] Fawi M. Curlora: Stable LLM continual fine-tuning and catastrophic
forgetting mitigation. arXiv preprint arXiv:2408.14572. 2024 Aug 26.

[242] Jindal I, Badrinath C, Bharti P, Vinay L, Sharma SD. Balancing con-
tinuous pre-training and instruction fine-tuning: Optimizing instruction-
following in LLMs. arXiv preprint arXiv:2410.10739. 2024 Oct 14.

[243] Liu Y, Tantithamthavorn C, Liu Y, Li L. On the reliability and
explainability of language models for program generation. ACM Trans
Softw Eng Methodol. 2024 Jun 3;33(5):1-26.

[244] Widyasari R, Ang JW, Nguyen TG, Sharma N, Lo D. Demystifying
faulty code with LLM: Step-by-step reasoning for explainable fault
localization. arXiv preprint arXiv:2403.10507. 2024 Mar 15.

[245] Santa Maria S. Vibe coding in enterprise software [Internet].
Medium. 2025 May 3 [cited 2025 May 2]. Available from:
https://medium.com/@santismm/vibe-coding-in-enterprise-software-
¢2921546613a

53

